
Hardware-based rendering
of full-parallax synthetic holograms

Alf Ritter, Joachim Böttger, Oliver Deussen, Matthias König, and Thomas Strothotte

We present a method for efficiently calculating the interference of complex-valued two-dimensional wave
patterns that is useful during the generation of synthetic holograms. These patterns are represented as
a special kind of images ~textures!, and the interference is calculated in a computer graphics rendering
process. This enables us to leverage hardware support for holographic imaging that is implemented in
many state-of-the-art computer workstations. Using this approach, we gain a speedup of a factor of
60–90 compared with conventional calculation methods for interfering wave patterns. Our method is
evaluated numerically, examples are shown, and the program code is outlined. © 1999 Optical Society
of America

OCIS codes: 090.1760, 090.1970.
1. Introduction

With research in synthetic holography a common
goal has been to reduce the enormous computational
effort inherent to synthetic hologram generation.

In the case of stereograms,1 several authors have
used computer graphics hardware in recent years.
Lucente,2 Lucente and Galyean,3 and Halle and
Kropp4 take advantage of the rendering facilities im-
plemented in graphics workstations for generating
the set of two-dimensional ~2-D! views that is needed
for stereogram production and for the superposition
of basis fringes that serve as diffractive elements in
holographic stereograms. Haines and Haines5 also
apply computer graphics rendering to generate 2-D
views as a basis for stereograms.

In our study these ideas are extended to interfere
complex-valued wave patterns by hardware-assisted
processing of textured images.6 These patterns rep-
resent arbitrary 2-D wave fields or, as in the case of
synthetic holography, planar cross sections through
the emitted wave fields of light sources. Processing
these patterns in a computer graphics rendering pro-

The authors are with the Faculty of Computer Science, Otto-
von-Guericke University of Magdeburg, D-39106 Magdeburg,
Germany. O. Deussen’s e-mail address is deussen@isg.cs.uni-
magdeburg.de.

Received 8 June 1998; revised manuscript received 23 November
1998.

0003-6935y99y081364-06$15.00y0
© 1999 Optical Society of America
1364 APPLIED OPTICS y Vol. 38, No. 8 y 10 March 1999
cess results in a significant speedup for calculating
interference.

The paper is organized as follows. After a short
introduction to synthetic holography, the stages of
our holographic rendering process are described, fol-
lowed by a discussion of methods for texture-based
interference simulation. Next, an extension to lines
and curves is shown. Finally, the results are re-
viewed and a future study is outlined.

2. Synthetic Holography

In its general form the information to be recorded on
a holographic plate is derived from solution of the
Kirchhoff diffraction integral for a given object

E~p*! 5
1
il *

p

S

E~p!
1
r

expS2pir
l Dcos~a!dS, (1)

where E~p! is the electric field strength contributed
from point p of the object surface S, E~p*! is the field
strength at point p* of the holographic plate, l is the
wavelength, r is the distance between p and p*, and
a is the angle between 3pp9 and the incident illumi-
nation wave.

A typical approximation of Eq. ~1! is performed by
decomposition of the object surface into N discrete
point sources that all contribute to the hologram in
the form of Fresnel zone plates7:

E~p*! 5
1
il (

i

N

Ei

1
r

expS2pir
l Dcos~a!. (2)

y
s

w

Here Ei is the field strength emitted by the point light
source pi. The evaluation of Eq. ~2! is still quite time
consuming. Below, we suggest our solution for re-
ducing the computational effort by means of com-
puter graphics hardware.

3. Hardware-Based Generation of Holograms

Our method of holographic imaging involves the fol-
lowing steps. First, a set of special images is pre-
computed. To represent complex numbers, several
color channels of the image are combined; the result
is what we call complex texture. This data structure
allows for performing hardware-based interference
between different wave patterns.

We then generate the hologram by calculating the
interference between complex textures that repre-
sent the light sources, by calculating the interference
with a reference wave, and by determining the de-
sired intensities with lookup tables. All of these
steps are performed as standard graphics hardware
operations based on the common graphics language
OPENGL.8

We reconstruct the resulting hologram either opti-
cally by recording it on film and reconstructing the
image in a laser setup, or by computer simulation.
The examples in this paper were reconstructed with
the optical simulation system DIGIOPT introduced by
Aagedal et al.9 by application of a Rayleigh–
Sommerfeld transform.

A. Precomputing Complex Textures

A complex texture consists of four color channels rep-
resenting values for both the imaginary and the real
components of all values of the complex wave pattern.
Such a texture is encoded with a standard computer
graphics image file format called RGBA. In an
RGBA file four channels represent the colors red,
green, and blue as well as an opacity component
called the alpha channel.

Each complex number of the wave field is now en-
coded as a colored pixel in the complex texture. Be-
cause negative values cannot be stored as colors, and
for numerical reasons, we use the red channel if the
real part is positive and the green channel to store the
absolute value if the value is negative. The same is
done with the blue and the alpha channels for storing
the imaginary part.

An example may clarify this: A cross section

Fig. 1. Textures representing wave patterns of point sources: ~a!
part!, green channel ~negative real part!, blue channel ~positive im
as gray-scale images. ~e! The Fresnel zone plate that is obtained
through a spherical wave originating from point p
ields, according to Eq. ~2!, an electrical-field
trength of the form

E~p*! 5
1
r

expS2pir
l D ,

where p* is a point on the cross section, l is the
avelength, and r is the distance between p and p*.
The complex numbers of this field are encoded in

the four color channels of Figs. 1~a!–1~d!. Each
gray-scale image represents the tonal value of the
corresponding color. In Fig. 1~e! the resulting
Fresnel zone plate is shown, which is the result of
interfering the complex texture with a plane refer-
ence wave.

Each point light source of a virtual object emits a
spherical wave that differs in phase. Therefore a set
of complex textures representing spherical waves of
different phase has to be precalculated.

Also, the light sources might differ in their distance
to the virtual holographic plate. This fact is repro-
duced with scaling of the precalculated complex tex-
ture.

We assume that the original texture was calculated
for a point source at distance z0. If this texture
should now represent a point at distance z, it has to
be scaled by10

s 5 ~zyz0!
1y2. (3)

Fortunately, such scaling of textures is also imple-
mented by graphics hardware and can be used inside
OPENGL.

The choice of the resolution of a complex texture
has to be dependent on the size of the hologram and
on the capacity that can be handled efficiently by the
graphics hardware. Hologram resolutions needed
for visual reconstruction typically exceed the maxi-
mum dimensions provided by the graphics hardware.
Therefore the hologram is rendered in tiles that are
combined to constitute the entire hologram.

To generate a hologram of N point sources pi, for
each of the sources the phase and the distance to the
virtual holographic plate are calculated and an ap-
propriate complex texture is used. The locations of
the pi are parallel projected on the plate and now
determine the center of the complex textures, which
are scaled according to Eq. ~3!.

ogether form a single complex texture: red channel ~positive real
ary part!, and alpha channel ~negative imaginary part! are shown
nterference of the complex texture with a plane wave.
–~d! t
agin
by i
10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 1365

c

1

In Fig. 2 the process is shown. A geometric object
is transformed into a set of complex textures. These
textures are interfered to generate the hologram.

B. Interfering Complex Textures

The simplest way of generating holograms is to per-
form the superposition of gray-scale textures such as
the one shown in Fig. 1~e!. In this case the textures
represent holograms of single graphic primitives and
thus have only positive values.

This method was performed by Lucente,2 Lucente
and Galyean,3 and Kropp4 to superimpose basis
fringes of stereograms and by Ritter et al.11,12 to cre-
ate full parallax holograms out of a moderate number
of textures. For a larger number of textures and for
an accurate simulation of the holographic imaging
process, complex wave patterns have to be processed.
As mentioned above, in this paper this is accom-
plished by interfering complex textures.

The difference between superposition and interfer-
ence of textures is illustrated in Fig. 3. Figure 3~a!
shows an object consisting of 155 points. In Fig. 3~b!
the result of overlaying gray-scale textures is given,
whereas the interference of the corresponding com-
plex textures is shown in Fig. 3~c!. Figure 3~d!
shows the simulated reconstruction of the hologram.

For interfering the textures, a special hardware
unit of high-end graphics workstations is used: the
accumulation buffer.13 It enables one to perform
hardware-based arithmetic operations on whole im-
ages. The corresponding programming code is given
in Appendix A.

Fig. 2. Generation of a hologram: A geometric object is trans-
formed into a set of complex textures. These textures are inter-
fered to generate the hologram.

Fig. 3. Construction of a hologram from a set of points: ~a! inpu
interference of complex textures for point sources with random ph
366 APPLIED OPTICS y Vol. 38, No. 8 y 10 March 1999
The algorithm works as follows: First, all the
complex textures are rendered to the accumulation
buffer by addition of the image values representing
positive values of the real and the imaginary parts of
the complex numbers.

Second, the reference wave ~also a complex texture!
is added by use of an appropriate weight factor. To
receive optimal contrast in the final hologram, the
maximal absolute value of the wave field calculated
thus far is determined and used as weight. In prac-
tice we use a heuristically determined weight w 5 0.5
p N for N given light sources.

Third, the negative values for the real and the
imaginary parts ~which are stored in the green and
the alpha channel! are read from the accumulation
buffer and subtracted from the corresponding posi-
tive values in the red and the blue channel.

At this point the accumulation buffer stores the
complex-valued wave pattern, which results from in-
terference of the waves that originate from the input
elements.

In the final step the amplitude A of the electrical
field in the hologram plane is calculated. The cor-
responding operation for each hologram pixel is de-
scribed by

A 5 uE~p!u 5 ~ReE
2 1 ImE

2!1y2, (4)

where ReE and ImE are the real and the imaginary
components of the electric field in the hologram
plane. Since the film material used for hologram
recording is sensitive to the intensity I as the square
of the amplitude A @see Eq. ~4!#, it is sufficient to
ompute the intensity14

I 5 A2 5 ReE
2 1 ImE

2. (5)

Equation ~5! is implemented with a so-called pixel
map operation while the frame buffer is read out with
the accumulated interference pattern. These oper-
ations are normally used for gamma correction and
map each value of the frame buffer to a value given in
the pixel map table.

In our case a table is installed that performs a
mapping of the values to their square. We obtain
the sum in Eq. ~5! by reading out the overall lumi-
nance of the two color channels ~red and blue! used

ect, ~b! result obtained by superposition of gray-scale textures, ~c!
~d! reconstruction of ~c! including typical speckles.
t obj
ase,

w
i
c
m
a

p
s
d

s

t

for representing real and imaginary components of
the complex numbers.

Thus all postprocessing operations for determining
the intensity are facilitated by OPENGL and are there-
fore supported by the graphics hardware. This al-
lows for creating holograms of large numbers of
textured elements with high performance on work-
stations with a hardware accumulation buffer.

C. Off-Axis Holograms

To generate off-axis reconstructions, the complex tex-
ture for the reference wave is changed. With an
inclined wave field, the generated patterns change
their shape appropriately. Figure 4 shows two ho-
lograms of three point sources. The hologram in
Fig. 4~a! was generated with a reference wave that

as parallel to the holographic plate; in Fig. 4~b! an
nclined reference wave was used. In this case the
enter of the resulting zone plates in the hologram
ove out of the center of the textures, which causes

n off-axis reconstruction.

4. Point-Based Holograms

As described above the most straightforward method
of generating a hologram is to represent the input
object with a number of point sources. This is illus-
trated in Fig. 3.

For display purposes it is important to have holo-
grams with diffuse surfaces. This is achieved by
point sources that emit light with random phase.
Otherwise the object would appear glossy.15 We did

Fig. 4. Off-axis reconstruction: ~a! hologram of point sources,
with the reference wave parallel to the virtual holographic plate;
~b! an inclined wave was chosen.

Fig. 5. Holographic image of a surface: ~a! input object assemble
reconstruction of ~b!, ~d! reconstruction of a hologram of the same
this by precomputing a set of 32 textures that repre-
sent zone plates at different phases. These textures
are used randomly for the point light sources.

One problem in combination with a number of ob-
jects that emit light with differing phase is the oc-
curence of speckle patterns @cf., Fig. 3~d!#. Speckle

atterns are inherent to coherent optics and can be
uppressed, for example, by optimization of the phase
istribution over the points.16 The optimization it-

self is beyond the scope of this paper, but the speedup
of the proposed method should also speed up the op-
timization process in order to get the right phase
factors.

To assemble surfaces, a number of point sources
are placed with sufficient density on the object sur-
face such that the reconstruction yields a continuous
appearance. Figure 5~a! shows a triangle approxi-
mated by 144 points. In Fig. 5~b! the holographic
plate is shown, and Figs. 5~c! and 5~d! show recon-
tructions.

5. Imaging Lines and Curves

A particularly appealing aspect of the concepts pre-
sented thus far is that they can be extended directly
to represent other primitives such as line and curve
segments. This has a marked effect on the overall
complexity by decreasing the number of textured el-
ements to be processed during hologram rendering.
Instead of having a texture for each point on a line or
curve, we are able to represent an entire line segment
with one element.

A point source emits a spherical wave. Lines emit
cylindrical and conical waves, depending on the
phase distribution along the line.15,17 These wave
patterns can also be stored as complex textures.
This enables assembling holograms of a set of lines
and curves. As for points, the elements are pro-
jected by parallel projection on the virtual holo-
graphic plate.

An example can be seen in Figure 6. In Fig. 6~a!
the hologram of a single vertical line parallel to the
hologram plane is shown. If the line is inclined to
the hologram, the corresponding complex texture is
also inclined and scaled according to Eq. ~3!; the re-
sultant hologram is shown in Fig. 6~b!.

Representing inclined lines by inclined complex
extures is possible, because if a linear phase distri-

t of 144 points, ~b! corresponding hologram with random phase, ~c!
ct with points in phase.
d ou
obje
10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 1367

l

nput

1

bution along the line is assumed, a conical wave is
emitted.17 Unfortunately, this cannot be done if
random phases are used. In this case the textures of
a set of lines with different inclination angles has to
be precalculated.

In Fig. 6~c! an object composed of several hundred
ines is shown, and Fig. 6~d! shows its hologram with

a linear phase distribution along each line.

6. Evaluation of the Proposed Method

It is instructive to analyze the proposed method with
respect to numerical accuracy and statistics about
the time consumption.

The graphics hardware allows textures to have a
range of 8 bit for each color channel, which corre-
sponds to 256 intensity levels in each component.
As holograms and other diffractive elements are usu-
ally constructed from less than 256 intensity levels,
this is sufficient. The accumulation buffer has a
depth of 25 bit, which allows for interference as great
as 217 complex textures without numerical problems.
The result is obtained with an accuracy of 8 bit.

To analyze the time consumption, we compared the
texture-based approach with traditional hologram
calculation in which Eq. ~2! has to be determined for
each point of the hologram. Implementations of
both methods were tested on a Silicon Graphics On-
yx2 computer with two R10000 ~195 MHz! processors
and InfiniteReality graphics.

Table 1 shows the timing results in seconds for
three hologram resolutions and a varying number of
input points as well as the speedup of the texture-
based approach over the traditional method. A fac-
tor of 57–91 is achieved for all but the trivial cases.

Fig. 6. Holograms of lines: ~a! cylindrical wave originating fr
transformation of the texture, ~c! input object assembled from line

Table 1. Time Consumed for Calculating Holograms of Different I
5120 3 5120 Pixels! in Seconds and Speedup of the Tex

Points

Traditional

512 1024 5120 512

1 2.5 9.9 255 0.19
10 4.8 19.3 483 0.21

100 28.5 113 2850 0.5
1000 250 1004 25000 3.6
368 APPLIED OPTICS y Vol. 38, No. 8 y 10 March 1999
If lines are generated, the speedup is much better,
because the lines are represented by one or a small
number of textures, whereas a traditional method
still has to evaluate Eq. ~2! for each line by integra-
tion. Even if the optimized methods for lines are
applied, the speedup factor remains in the same level.

7. Conclusions

In this paper we have described a method that uses
computer graphics hardware for rapidly generating
interference between complex wave patterns for use
in computer-generated full-parallax holograms.

All steps of the process have been implemented on
the basis of hardware supported operations with the
standard graphics computer language OPENGL.
This results in a considerable speedup compared with
traditional methods and forms a new bridge between
computer graphics and synthetic holography.

Our timing results show that for moderate resolu-
tions and object complexities the generation of full-
parallax holograms can achieve interactive rates.

Furthermore, the complex textures as defined in
this paper can be used in various places where dis-
crete fields of complex values are to be treated. This
involves operations on 2-D and three-dimensional
wave fields in physics and in electrical engineering.

In a future study the direct mapping of other geo-
metric primitives, e.g., triangles, to the holographic
equivalent needs to be investigated. This transfor-
mation enables a holographic imaging of surfaces
that is more efficient than by assembly of point
sources alone.

One important property of our method is that com-
plex wave patterns resulting from the interference of

line, ~b! conical wave pattern of an inclined line generated by
! hologram of ~c! with cylindrical and conical wave patterns.

Complexity ~Number of Points! and Size ~512 3 512, 1024 3 1024,
ased Approach Compared with the Traditional Method

exture Based Speedup

1024 5120 512 1024 5120

0.75 18 13 13 14
0.84 20 23 23 44
2.0 42 57 57 68

15 275 69 67 91
om a
s; ~d
ture-B

T

one architecture,” in Proceedings of ACM SIGGRAPHyEuro-
a number of elements of the holographic equivalent
can be stored themselves as a single complex texture.
This will allow us to reuse parts of scenes without
recalculation.

Appendix A: Programming Code for Hardware-Based
Interference

As described in Section 3, all steps during the ren-
dering of the hologram are performed with OPENGL
and graphics hardware. Below, an outline of the
algorithm is given.

The image is encoded as follows: The red channel
stores the positive real part of the values, the green
channel stores the negative real part, the blue chan-
ysis and Synthesis ’97, H.-P. Seidel, B. Girod, and H. Niemann,
nel stores the positive imaginary part, and the alpha
channel stores the negative imaginary part.

References
1. S. A. Benton, “Survey of holographic stereograms,” in Process-

ing and Display of Three-Dimensional Data, J. J. Pearson, ed.,
Proc. SPIE 367, 15–19 ~1983!.

2. M. Lucente, “Interactive three-dimensional holographic dis-
plays: seeing the future in depth,” ACM ~Assoc. Comput.
Mach.! Comput. Graphics 31~2!, 63–66 ~1997!.

3. M. Lucente and T. A. Galyean, “Rendering interactive holo-
graphic images,” in Proceedings of ACM SIGGRAPH ’95, R.
Cook, ed., Annual Conference Series ~ACM Press, New York,
1995!, pp. 387–394.

4. M. W. Halle and A. B. Kropp, “Fast computer graphics render-
ing for full parallax spatial displays,” in Practical Holography
XI, S. A. Benton, ed., Proc. SPIE 3011, 105–112 ~1997!.

5. K. Haines and D. Haines, “Computer graphics for holography,”
IEEE Comput. Graphics Appl. 12, 37–46 ~1992!.

6. M. J. Kilgard, “Realizing OpenGL: two implementations of
Graphics Workshop on Graphics Hardware, S. Molnar and
B.-O. Schneider, eds. ~ACM Press, New York, 1997!, pp.
45–55.

7. J. P. Waters, “Holographic image synthesis utilizing theoreti-
cal methods,” Appl. Phys. Lett. 9, 405–407 ~1966!.

8. J. Neider, T. Davis, and M. Woo, OpenGL Programming Guide:
The Official Guide to Learning OpenGL ~Addison-Wesley,
Bonn, Germany, 1993!.

9. H. Aagedal, Th. Beth, H. Schwarzer, and S. Teiwes, “Design of
paraxial diffractive elements with the CAD system DigiOpt,”
in Diffractive and Holographic Optics Technology II, I. Cin-
drich and S. H. Lee, eds., Proc. SPIE 2404, 50–58 ~1994!.

10. M. Born and E. Wolf, Principles of Optics, 6th ed. ~Pergamon,
Oxford, 1980!.

11. A. Ritter, Th. Benziger, O. Deussen, Th. Strothotte, and H.
Wagener, “Synthetic holograms of splines,” in 3D Image Anal-
eds., ~infix Verlag, Sankt Augustin, Germany, 1997!, pp. 11–18.
12. A. Ritter, O. Deussen, H. Wagener, and Th. Strothotte, “Holo-

graphic imaging of lines: a texture-based approach,” in Pro-
ceedings of the International Conference on Information
Visualization IV ’97, P. Storms, ed. ~IEEE Computer Society
Press, Los Alamitos, Calif., 1997!, pp. 272–278.

13. J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal,
“InfiniteReality: a real-time graphics system,” in Proceedings
of ACM SIGGRAPH ’97, T. Whitted, ed., Annual Conference
Series ~ACM Press, New York, 1997!, 293–302.

14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed.
~McGraw-Hill, New York, 1968!.

15. C. Frère, D. Leseberg, and O. Bryngdahl, “Computer-
generated holograms of three-dimensional objects composed of
line segments,” J. Opt. Soc. Am. A 3, 726–730 ~1986!.

16. W. Lauterborn, Th. Kurz, and M. Wiesenfeldt, Coherent Op-
tics, Fundamentals and Applications ~Springer-Verlag, Berlin,
1995!.

17. D. Leseberg, “Computer generated holograms: cylindrical,
conical, and helical waves,” Appl. Opt. 26, 4385–4390 ~1987!.
procedure InterfereElements~!
$ glBlendFunc ~GL_ONE, GL_ZERO!; y* OPENGL settings *y

glEnable ~GL_BLEND!;
foreach~element! $ y* For all holographic elements *y

render~element! y* draw the texture that represents the *y
y* complex numbers *y

glAccum~GL_ACCUM,11.0!; % y* Transfer into the accumulation buffer *y
render~reference!; y* Interfere with reference wave, using an *y
glAccum~GL_ACCUM, refweight!; y* appropriate weight factor refweight *y
glReadPixels ~GL_GREEN, greenBuffer!; y* read green and alpha values *y
glReadPixels ~GL_ALPHA, alphaBuffer!;
glClear~ !; y* Clear screen *y
glDrawPixels ~GL_RED, greenBuffer!; y* Draw green and alpha to *y
glDrawPixels ~GL_BLUE, alphaBuffer!; y* red and blue *y
glAccum ~GL_ACCUM, 21.0!; y* Subtract them as they represent *y

y* negative values *y
glPixelMap~!; y* Install pixel map table accord. to Eq. ~5! *y

y* but without using green and alpha val. *y
glReadPixels~!; y* Map pixels and transfer to memory *y

y* according to Eq. ~5! *y
}

10 March 1999 y Vol. 38, No. 8 y APPLIED OPTICS 1369

