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Abstract Analytic tools for addressing spontaneous brain
activity, as acquired with fMRI during the “resting-state,”
have grown dramatically over the past decade. Along with
each new technique, novel hypotheses about the functional
organization of the brain are also available to researchers.
We review six prominent categories of resting-state fMRI
data analysis: seed-based functional connectivity, indepen-
dent component analysis, clustering, pattern classification,
graph theory, and two “local” methods. In surveying these
methods, we address their underlying assumptions, method-
ologies, and novel applications.

Keywords Resting state · Functional connectivity ·
Brain networks

Introduction

Entering a cocktail party with three friends, each of us might
intermingle—meet new people, loiter by the hors d’œuvres—
but throughout the evening we would no doubt exchange
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glances, watch for indications that all is well, or subtly
communicate that it may be time to leave.

Upon exiting, the traditional mapping of new social
connections might be discussed as we recount the people
we met and the new connections that were formed. However,
a much less tangible aspect of the social dynamic is the inter-
mittent communication that maintained the link throughout
the party.

These two facets of social connectedness find correlates in
models of brain connectivity, which have been roughly cate-
gorized as either anatomical or functional. While anatomical
connectivity may be understood as the concrete pathways
of potential information exchange (such as collected phone
numbers and email addresses in the social realm), functional
connectivity may be better defined as the intermittent inter-
actions maintaining those lines of communication.

But how would we summarize and describe these dynamic
connections? One early definition established functional con-
nectivity as “the temporal correlation of a neurophysiological
index measured in different brain areas” [1]; however, over
the past two decades, the shift in focus beyond mere corre-
lation has led to the development of increasingly complex
frameworks to describe functional relationships between
brain regions

In the case of our party, how would we describe the
dynamic interactions throughout the evening? Would we
choose an individual, perhaps a central figure such as the
host, and describe her interactions with each of the guests
(seed-based functional connectivity)? Would we map out
the predominant lines of conversation (independent com-
ponent analysis) or the cliques that formed and disassem-
bled throughout the evening (clustering)? Would it be more
appropriate to map and abstract the lines of communica-
tion (graph theory) or search for delineating patterns of
activity (pattern classification)? Or would we disregard the
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question of connectivity and simply describe the behavior of
the guests individually (“local” approaches)? Each of these
approaches requires a unique methodology, each is based
in specific assumptions about the structure of social interac-
tions, and each implies an optimal description. Before begin-
ning an analysis, it would be advantageous to consider these
aspects—likewise, with respect to the brain.

Over the past decade, researchers examining functional
connectivity using “resting-state” functional magnetic res-
onance imaging (fMRI) data have witnessed a dramatic
increase in the analytic options for describing and summa-
rizing the functional organization of the brain. Although,
by convention, we will often use the term “resting-state” to
denote the data for which these analyses have been largely
developed, we also recognize the controversies surrounding
this designation [2,3]. While other terms have been adopted
to supplant “resting-state” (e.g., “intrinsic” and “spontane-
ous” [4]), and, when contextually appropriate, have become
practically interchangeable, we will maintain the conven-
tion of “resting-state” due to its referential role within the
field’s literature. Nevertheless, it is crucial to recognize that
the methods described here are not limited to data acquired
during a “resting” condition, and can equally be used as
a model-free analysis for any steady-state fMRI data set
(e.g., [5]).

Numerous studies and reviews have explored the implica-
tions of various pre-processing steps (e.g., [6–11]);
however, only a few to date have broadly addressed post-
processing techniques (for a recent review of functional con-
nectivity methodologies with emphasis on the computational
aspects, see: [12,13]; or for emphasis on clinical applications,
see: [14,15]). In the following review, we will address the
diverse array of post-procesing techniques available, with a
focus on the theoretical presuppositions of each for exploring
brain organization and function (see Fig. 1).

We will identify six analytic categories as they are applied
to resting-state fMRI data:

1. seed-based functional connectivity
2. independent component analysis
3. clustering
4. pattern classification
5. graph theory
6. “local” methods1

We will discuss their different underlying theoretical assump-
tions and provide a basic methodological review for their
implementation (see also Table 1). Such a framework may
also help to highlight analytic techniques that could be further

1 We use the term “local” to denote methods that do not address
long-distance functional connectivity, but rather assess local voxelwise
activity.

explored and developed. Given the wide scope of this review,
we will only attempt a general intuition for the different
measures. Thus, the aim of the current review will be to offer
an introduction to analytic methodologies for resting-state
fMRI data.

Seed-based functional connectivity

Seed-based functional connectivity analysis is the correla-
tion between activity in an a priori region-of-interest (ROI),
or “seed region”, and activity in all other voxels in the brain.
Another widely used approach is to correlate the activity of
several distributed ROIs.

The technique was initially applied to resting-state fMRI
data by Bharat Biswal et al. in 1995 [16]. Using a seed region
in the motor cortex, resting-state functional connectivity was
shown to replicate patterns of motor task activation.

The straightforward statistics and comprehensible results
have made seed-based functional connectivity a popular tech-
nique. But despite the statistical transparency, the technique
suffers from the primary drawback of requiring a priori selec-
tion of seed regions or reduction to a limited number of
ROIs. Among the predominant techniques for determining
functional connectivity, seed-based procedures are the most
explicitly model-based [12].

Techniques

Seed-based analysis comprises two basic steps:

1. extraction of a model time-series from a specified area;
and,

2. quantifying the similarity between the model time-series
with the time-series from other voxels or ROIs.

In its simplest form, the correlation of an averaged ROI
time-series with all other voxels is clear-cut and easily
implemented. Long-facilitated by general fMRI data pro-
cessing software such as AFNI2 and SPM,3 other software
packages have recently emerged focusing specifically on
streamlined processing of resting-state functional connec-
tivity using MATLAB in conjunction with SPM: “REST”4

and “MATLAB Toolbox for Functional Connectivity”5 [17].
Over the past decade, assessing functional connectiv-

ity with seed-based approaches has expanded to include

2 http://afni.nimh.nih.gov/afni/.
3 http://www.fil.ion.ucl.ac.uk/spm/.
4 http://sourceforge.net/projects/resting-fMRI/.
5 http://groups.google.com/group/fc-toolbox.
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Fig. 1 A flowchart of possible questions that could be addressed with current methodologies given a resting-state fMRI data set

assorted signal processing and statistical techniques aimed at
extracting more refined and considered relationships between
regions. The following overview will address several of the
innovations developed for both steps of the seed-based anal-
ysis.

Time-series extraction for a seed region raises issues
regarding the most viable method to purify signal from a
set of contiguous voxels. The conceptually basic method is
averaging the value at each time point, thus cancelling out
extraneous noise. A novel interactive implementation has
recently been made available with the aforementioned anal-
ysis package AFNI. InstaCorr allows the selection of a seed
region to be virtually simultaneous with the mapping of the
correlation map. It is possible to modify the radius of the
seed region and the degree of spatial smoothing (tradition-
ally implemented by defining the size of a Gaussian filter that
assigns a value to each voxel based on the weighted average
of surrounding voxels), thus facilitating the exploration of
these decisions on resultant correlation maps. The signifi-
cance of seed size and spatial smoothing decisions becomes
relevant when considering the signal-to-noise ratio of the
data, assumptions about hemodynamic response throughout
the brain, and the desired anatomical specificity of the resul-
tant functional connectivity maps.

More computationally advanced alternatives, such as
principal component analysis (PCA) have also been imple-
mented for time-series extraction. Essentially, PCA trans-
forms the seed region time-series into a set of “compo-
nents” that successively account for the greatest amount
of variance in the data. Zhong et al. recently demon-
strated that using PCA to extract the signal from an ROI
for regression-based functional connectivity analysis could

improve the accuracy and true positive rate for detecting
the default-mode6 and motor networks, when compared
to averaging over the seed region [21]. Their method has
the advantage of combining data-driven optimization of the
model time-series with statistically straightforward model-
driven regression, thus capitalizing on the strengths of both
techniques.

After a model time-series has been extracted, myriad sta-
tistical techniques are available for quantifying the rela-
tionship between the seed region and other voxels or ROIs.
As each addresses different aspects of the signal, each also
implies specific hypotheses about the mode of communica-
tion assessed with functional connectivity. The blood oxy-
gen-level dependent (BOLD) signal reflects the response of
deoxyhemoglobin (deoxy-Hb) concentration to changes in
local neuronal activity and is determined by vascular (blood
velocity, blood volume: “neurovascular coupling”) and met-
abolic (oxygen consumption: “neurometabolic coupling”)
factors. The analytic tool employed inherently makes certain
assumptions about the temporal dynamics of the deoxy-Hb
response across the entire brain.

For instance, temporal correlation (or covariance) can
describe synchronous fluctuations, whereas cross-correla-
tion can accommodate lags in communication between areas.
These approaches would be appropriate if neurovascular cou-
pling were globally consistent; however, if we cannot make

6 The “default-mode network” consists of medial prefrontal, postero-
medial, and inferior lateral parietal cortex, and received its name due
to greater activity during the baseline “resting” condition [18,19]. For
a recent review, see: [20].
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that assumption, then a statistical method which is insensitive
to the temporal domain might be more suitable.

While cross-correlation quantifies the relation between
two signals in the time-domain, coherence operates equiv-
alently in the frequency-domain. Coherence thus provides a
means for assessing functional connectivity that is insensi-
tive to inter-regional differences in neurovascular coupling
dynamics [22,23]. Shifts in the frequency spectrum do not
alter the degree of coherence (just as lags in the time-domain
do not alter cross-correlation coefficients), considering the
low-frequency spectral band in which functional connectivity
is detected [16,24,25], low-pass filtering at 0.1 Hz (or even
lower) is an essential preprocessing step for this method.
Higher frequencies due to cardiac or respiratory artifacts
would otherwise interfere in coherence analyses. Further-
more, different networks have been shown to correlate at
distinct low-frequency bands at rest [26,27], and are mod-
ulated in the low-frequency domain during motor [28] and
cognitive effort [29].

Another approach, rather than looking at the magnitude of
the spectral information, is to explore the phase-spectrum
delay between regions. For example, Sun et al. developed a
novel method of addressing latency between regions in con-
junction with connectivity through the combined analysis of
phase-delay and coherence [30].

When more than one seed region is analyzed, the spec-
ificity of functional connectivity to only one of the regions
is a critical issue. Partial correlation (or multiple regres-
sion) reveals the functional connectivity between a pair of
regions, removing influences from others [31]. For example,
partial correlation has been used to parcellate the thalamus
with respect to cortical regions, by eliminating the influence
of all other cortical regions [32]. The influential role of the
posteromedial component of the default-mode network in the
networks functioning has also been demonstrated using such
methods [33].

The definition of functional connectivity is often described
within the neuroimaging literature in contrast to effective
connectivity, which addresses the directionality of influ-
ence between regions. While numerous techniques have been
developed to address causal interactions in fMRI data, one
popular approach in resting-state analysis is Granger cau-
sality [34]. The analysis assumes that better prediction is
an indication of influence, and tests whether past values of
time-series A better predict future values of time-series B than
past values of time-series B alone. It has been used to address
control of the default-mode network [35,36] and the chang-
ing influences between networks with respect to age [37].
Nonetheless, due in part to temporal blurring induced by
the hemodynamic response, the potential utility of effective
connectivity to resting-state fMRI data, without experimen-
tal manipulation, remains a source of debate (see the section
Correlation and Causality in [13]) and methodological inno-

vation (e.g., [38]). The rest of the current review, however,
will focus on methods for the analysis of functional connec-
tivity.

Applications

Early studies of resting-state functional connectivity focused
on describing well-charted neural systems from the cogni-
tive neuroscience literature, such as the motor cortical net-
work [39,40], visual network [41–43], a language network,
including Broca’s and Wernicke’s areas [44], a cerebellar-
prefrontal network [45], and networks based in the amyd-
gala and hippocampus [40]. Of interest to the emergence of
the“resting-state” fMRI research field, Greicius et al. were
the first to use seed-based functional connectivity to map
the default-mode network in 2003 [46], thus effectively link-
ing the resting-state functional connectivity literature (whose
lineage is traced to Bharat Biswal et al. 1995 [16]) with
the “resting-state” of cognitive neuroscience (which emer-
ged from Shulman et al. 1997 [18] and several publica-
tions in 2001 by Marcus Raichle, Deborah Gusnard et al.
[47,48]).

While a significant concern of these initial studies was
to establish the validity of studying functional connectiv-
ity in the absence of an attributable cognitive or behavioral
state, more recent research into resting-state functional con-
nectivity has taken advantage of its strengths in order to
address topics that are beyond the practical scope of task-
based fMRI. For instance, the detection of functional subdi-
visions within complex regions usually requires large-scale
meta-analysis (e.g., striatum [49], anterior cingulate [50], and
cerebellum [51]); however, systematic placement of seed
regions throughout such areas has revealed similar sub-
divisions in striatum [52,53], anterior cingulate [54], and
cerebellum [55,56], as well as amygdala [57,58], medial
temporal cortex [59], cross-modal auditory-visual connectiv-
ity during rest [60], and the red nucleus [61]. Other studies
have observed the presence of novel subdivisions with the
precuneus [62] and the default-mode network [36], somato-
topic organization within the motor cortex [63], differen-
tiation of the dorsal and ventral attention streams [64], a
hippocampal-parietal memory network [65], and a fron-
to-parietal control network [66]. The efficiency of these
approaches for exploring functional neuroanatomy with data
sets comprising merely dozens of participants, rather than a
meta-analysis of an equal number of studies, is evident.

Furthermore, these approaches have been fruitful in cross-
species animal research. The default-mode network is found
in the anesthetized macaque monkey [67], as well as the
posterior parahippocampal network [68], and posteromedial
subdivisions reflecting the anatomical tracing literature [62].
In the rat, the sensorimotor and visual networks have been
mapped [69,70]. The general flexibility of resting-state scan-
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ning has enabled rapid innovation for addressing cross-spe-
cies questions using parallel non-invasive techniques.

Amidst these advances, the issue of how to best opti-
mize ROI-selection persists as the most evident weakness
of seed-based approaches. Meta-analyses have provided an
effective strategy for probing specific distributed systems.
For instance, in order to examine the test-retest reliability of
resting-state data, Shehzad et al. [71] specified three sets of
ROIs, derived from four different and representative stud-
ies [72–75]. However, the further development of computa-
tionally-oriented, a priori-free selection criteria is still much
needed.

Discussion

In summary, seed-based approaches constitute one of the pri-
mary analytic strategies for resting-state data, and offer an
unambiguous means of quantifying functional connectivity.
The limitations of a priori seed region selection, size, and
shape, are a substantial drawback, as these choices can alter
findings, and may bias the results. Furthermore, proper delin-
eation of subdivisions becomes a methodological question in
itself.

Potential solutions to these issues take the form of sev-
eral other prominent methodologies (ICA, cluster analyses),
which will be discussed in the following sections.

Independent component analysis

Assuming the brain is organized into a number of func-
tionally discrete networks, an optimal analytic technique
would determine the signals unique to each network from
the data alone. Blind source separation (or decomposi-
tion) techniques address the problem of determining distinct
components within a set of signals with minimal a priori
assumptions. Rather than requiring the specification of seed
regions to derive networks, independent component anal-
ysis (ICA) has gained prominence in resting-state fMRI
data analysis as a method to determine the spatial distribu-
tion of distinct functional connectivity networks [76–79]. In
comparison with the aforementioned seed-based approaches,
ICA offers several advantages:

– It does not require assumptions about locations of net-
works.

– Networks can be distributed, without a focal seed region.
– It can be conducted with minimal preprocessing, as noise

is extracted as components during the analysis.

Nonetheless, ICA is not the perfect answer to functional con-
nectivity analysis, as will become clear from a closer inspec-
tion of the methods.

Technique

The aim of ICA is to delineate maximally independent spatial
or temporal components. As fMRI data generally consists of
more spatial than temporal data points, spatial ICA is more
widely applied. ICA assumes that an fMRI data set consists
of a mix of independent signals from a number of spatially
distributed sources, and decomposes the data into several
such independent components.

Many software tools are available to implement ICA. For
example, probablistic ICA with MELODIC7 is available with
FSL; GIFT and FIT8 can be applied using SPM; cortex-based
ICA can be conducted in BrainVoyager 20009; and ICASSO
offers ICA reliability analysis10 [80].

Although ICA claims to require no initial assumptions, the
approach does require specification of the number of compo-
nents. While toolboxes such as MELODIC can automatically
estimate this number through prior PCA-based estimation, in
practice, the dimensions are often estimated by the user.

In deriving independent components, ICA extracts com-
ponents based in “artifactual” signal such as scanner noise,
head movement, and physiological “artifacts” (e.g., cardiac
and respiratory signal) alongside functionally meaningful
networks. While the extraction of these “noise” compo-
nents is advantageous—such artifact extraction has even
been proposed as a preprocessing step for seed-based cor-
relation analysis [81]—it requires that the user exercises
judgment in separating meaningful networks from noise
components [82–85], or develop classification techniques
[84,86]. Thus, while minimal a priori assumptions are
required, ICA does require substantial a posteriori selection
of valid components, whether though visual inspection or
automated methods.

Group-level ICA analysis is a substantially more compli-
cated issue due to the difficulty of selecting corresponding
components across individuals [87,88]. The order of ICA
components is unconstrained, and cannot be used for selec-
tion. One approach for classifying a network consistently
across individuals is template matching [89,90]. Individ-
ual-level independent components are first discarded based
on temporal criteria (e.g., valid components must consist of
characteristic low-frequencies). Then, all remaining individ-
ual-level components are compared to a set of researcher-
defined spatial templates for “goodness of fit”. Although
template matching is an effective means for consistent selec-
tion of analogous networks across individuals, it relies on
assuming appropriate templates.

7 www.fMRIb.ox.ac.uk/fsl/melodic/index.html.
8 http://icatb.sourceforge.net/.
9 http://www.brainvoyager.com/BrainVoyager.htm.
10 http://www.cis.hut.fi/projects/ica/icasso/.

123

www.fMRIb.ox.ac.uk/fsl/melodic/index.html
http://icatb.sourceforge.net/
http://www.brainvoyager.com/BrainVoyager.htm
http://www.cis.hut.fi/projects/ica/icasso/


294 Magn Reson Mater Phy (2010) 23:289–307

Group-level ICA would seem like the obvious choice for
derivation or such templates; however, it too presents sig-
nificant complications. One proposed solution is to conduct
group-level ICA on co-registered and concatenated indi-
vidual datasets. The group-level results of temporal con-
catenation ICA (TC-ICA) can then be used as templates
in order to derive individual-level maps. Such approaches
have been fruitful in discerning distinct cortico-cerebellar
networks [91].

Dual-regression ICA has recently been developed as a
method to derive more accurate group-level comparisons
based on TC-ICA templates. After creating the templates,
spatial regression is conducted on the individual level to
extract a temporal model for a second temporal regression.
The resultant statistical maps are then used for group-level
analysis [25,92,93].

An alternative, proposed by Calhoun et al. [94], addresses
the problem of combining components across individuals.
Rather than use a template-matching scheme, the individual
data sets are entered into a single ICA analysis, and then
back-reconstructed. This procedure ensures that the com-
ponents are consistently ordered across individuals.

Other automated group-level approaches aim to cluster
components across subjects based on spatial configurations
(e.g., partner-matching [95]).

Applications

ICA has been responsible for a significant shift in under-
standing large-scale network structure in the brain. Owing
to its exploratory, data-driven aspect, several networks have
been consistently classified across studies and subject groups
[78,79,96,97]. ICA-derived networks are consistent across
participants [79] and scan sessions [98,99], with the default-
mode network demonstrating particularly robust reproduc-
ibility and cross-research selection reliability [100,101]. ICA
has been applied to infants as young as 24 weeks [102]
and has also been widely used to study clinical popula-
tions (e.g., Alzheimer’s disease [89,103], mild cognitive
impairment [104], depression [105], schizophrenia [106],
Huntington’s disease [107], lateral sclerosis [108], temporal
lobe epilepsy [109], and non-communicative brain damaged
patients [110]).

The impact of data-driven approaches such as ICA were
demonstrated in a recent paper by Stephen Smith et al. [111]:
20 ICA components were extracted from resting-state data
from 36 individuals, as well as 7,342 peak coordinates from
the collection of functional studies contained in the BrainMap
database. The sets of components were highly consistent,
demonstrating the structural persistence of these functional
networks at rest, and suggesting that these networks may pro-
vide a foundation for discerning the modular building-blocks
of cognitive functions.

Discussion

Blind-source analysis methods are data driven, and do not
require specification of seed-regions. However, they are
nonetheless hypothesis driven, because the “true” number
of components present in the data is not known, and has to
be more or less empirically chosen (techniques for the auto-
matic calculation of the number of components exist, and
have demonstated high test-retest reliability, but there is poor
concordance across the various estimation algorithms [99]).
The reproducibility of ICA is another significant challenge.
The ICA algorithm begins with a random assumption with
each iteration, thus producing results that are variable across
analyses.

Secondly, following component identification, the selec-
tion of meaningful components remains a problem. Man-
ual selection through visual inspection is prone to human
error. While automated methods are promising, they either
rely on preexisting templates (i.e., template-matching) or are
computationally intensive (i.e., back-reconstruction). Novel
methods for automated ICA dimensionality and group-level
analysis is an area of ongoing development. Nevertheless, the
automaticity and model-independence of ICA makes it a con-
venient tool for whole-brain functional connectivity analysis.

One dubious assumption at the foundation of ICA is the
independence of network signals in the brain. Considering
the extraordinary degree of interconnectivity between the
entire brain, striving to derive independent networks would
not seem to be an effective method at generating a physiologi-
cally plausible model of functional organization. Daubechies
et al. have recently suggested that the ICA algorithms used
in fMRI data analysis are tuned to detect sparsity, rather than
independence [112], a more likely model.

Clustering

Although model-free approaches to resting-state functional
connectivity, such as ICA, overcome one of the greatest
problems associated with model-based (i.e., seed-based)
approaches, namely, the dependence of findings on the ini-
tial selection of seed ROIs, these model-free approaches still
entail a degree of subjectivity and human judgment both in
dimensionality estimation and in the selection of “meaning-
ful” components or networks. One approach that is gaining
popularity in the attempt to overcome these issues is the appli-
cation of clustering techniques to resting-state data.

Clustering is essentially a family of mathematical tech-
niques that searches for patterns in data. More specifically,
clustering is the unsupervised partitioning (classification) of
data into subsets (clusters) so that observations assigned to
the same cluster are more similar to one another than they
are to observations assigned to another cluster.
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Table 1 A select digest of representative “resting-state” research articles for each section

Section References Desription

Seed-based functional connectivity Biswal et al. 1995 [16]
Margulies et al. 2007 [54]
Sun et al. 2005 [30]

Makes use of temporal correlation from a selected region-of-interest,
or “seed” region. Now termed “seed-based” functional connectivity,
the technique relies (and expands) on the basic premise, which
defines it as “the temporal correlation of a neurophysiological index
measured in different brain areas”

Independent component analysis De Luca et al. 2006 [96]
Damoiseaux et al. 2006 [79]
Beckmann et al. 2005 [78]

Assumes that resting-state data is composed as a mixture of unknown,
but uncorrelated signals. Decomposes rs-fMRI data into spatially or
temporally independent components (networks)

Clustering van den Heuvel et al. 2008 [113]
Salvador et al. 2005 [114]
Cohen et al. 2008 [115]

A family of statistical techniques that searches for patterns in data.
Unsupervised partitioning (classification) of data into subsets
(clusters)

Pattern recognition Craddock et al. 2009 [116]
Zhu et al. 2008 [117]
Shen et al. 2009 [118]

Involves the application of multivariate pattern classification
algorithms. These algorithms use the characteristics of objects to
identify classes to which they belong. In fMRI data, these
characteristics are generally brain activation or connectivity patterns,
and the classes are usually brain or cognitive states

Graph theory Bassett and Bullmore 2007 [119]
Achard and Bullmore 2007 [120]
He et al. 2009 [121]

A mathematical tool whose aim is to characterize aspects of a network
structure using a variety of measurements. One such approach
characterizes the brain as a small-world network

Local methods Zang et al. 2004 [122]
Zou et al. 2008 [123]
Zuo et al. 2010 [25]

Two measures which quantify the function of the brain locally can be
implemented in resting-state fMRI studies: regional homogeneity
(ReHo) and amplitude of low frequency fluctuations (ALFF)

In the context of resting-state functional connectivity anal-
ysis, clustering algorithms have been used to partition the
brain into groups (clusters) of voxels or regions that are func-
tionally connected with one another [113], or that exhibit
similar patterns of functional connectivity with the rest of
the brain [115]. The former represents a method akin to ICA,
aimed at detecting distinct large-scale resting state networks,
while the latter is an emerging approach aimed at breaking
the brain down into its smallest detectable distinct functional
units. The main results of these studies are briefly reviewed
below, but it is worth noting that neuroimaging applications
of clustering approaches are not restricted to resting-state
studies, as clustering has been applied to structural connectiv-
ity (e.g., diffusion tensor imaging), task activation and neu-
rotransmitter receptor data with equally impressive results
(e.g., [124–129]).

Technique

As we have noted, clustering is a family of techniques, and
researchers face a plethora of options with regard to the spe-
cific clustering approach to apply to their data. In RSFC appli-
cations, those most commonly employed include:

– hierarchical clustering approaches, which start by
treating each data point as a singleton cluster, then,
as K decreases, successively merge previously estab-
lished clusters (visualized as a dendrogram or tree)
(e.g., [114,115,130,131]);

– partitional clustering (such as k-means), which deter-
mine all K clusters at once, typically by attempting to
minimize intra-cluster variance (e.g., [130,132]);

– spectral clustering approaches, which perform an eig-
endecomposition of (the graph Laplacian of) the simi-
larity matrix as an initial data reduction step, then use
one of the more standard clustering algorithms (e.g.,
k-means) to perform the final partition of the data on the
basis of the resultant matrix of eigenvectors (the data’s
spectrum) (e.g., [113]).

There are, of course, many other interesting clustering tech-
niques with applications to resting-state fMRI data, includ-
ing non-metric clustering (e.g, [133]), which hold potential
as alternatives to conventional Euclidean distance-based
measures. The development and improvement of cluster-
ing methods is a topic of intense research in fields such as
machine learning (e.g., [116]), which will be addressed in
the following section on pattern classification.

Applications

In the first application of clustering techniques to resting-
state functional connectivity data, Cordes et al. [131] applied
hierarchical clustering using single linkage to frequency-
specific inter-voxel correlations. Due to the computational
complexity involved, the analysis was limited to four slices
covering auditory, motor and visual cortex (1,300–2,400 vox-
els). They detected several, mostly bilateral clusters that were
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readily identifiable as functionally distinct areas, including
sensorimotor cortex, auditory cortex, fusiform gyrus and pri-
mary visual cortex, as well as a number of “nuisance” clus-
ters corresponding to CSF or other artifacts. Furthermore,
they demonstrated that, for the majority of clusters detected,
cardiac, respiratory and motion-related contributions to func-
tional connectivity between the voxels were minimal.

Salvador et al. [114] used hierarchical clustering and
multidimensional scaling to identify six networks. How-
ever, their methods formed clusters that grouped regions
according to anatomical location (e.g., frontal, temporal, sub-
cortical), and thus the resultant networks differ from the rest-
ing-state networks with which we are now more familiar. In
contrast, Thirion et al. [134] clustered coherence measures
of resting-state data using Gaussian Mixture Models, and
observed several plausible networks, including medial and
lateral visual networks, and a bilateral fronto-parietal net-
work, although consistency across the small subject sample
was low.

Of course, many of these early clustering studies were lim-
ited by the computational capabilities available at the time.
As a result, researchers were required to reduce the volume
of data entered into their analyses, either by acquiring data
from only a limited number of slices, rather than the whole
brain [131], or by resampling the brain according to a par-
cellation scheme (e.g., [114,134]).

More recently however, vast improvements in computa-
tional resources have made it possible to perform clustering
analyses at the voxel level, permitting the performance of
analyses at a finer scale that remains close to that of the
original data. Consequently, there is increasing sophistica-
tion in the methods employed and, most important, increasing
convergence with the results of other resting-state analysis
methods (e.g., ICA).

Two exemplars of this increased sophistication and con-
vergence are provided by Van den Heuvel et al. [113]
and Bellec et al. [130]. The first of these studies, by Van
den Heuvel et al. used spectral clustering, specifically, the
Ncut method devised by Shi and Malik [135], to partition
whole-brain grey matter on the basis of voxelwise functional
connectivity (expressed as temporal correlation) in 26 partic-
ipants. One notable methodological advance detailed in their
paper was the computation of a consistency matrix, which
quantifies the frequency with which voxels were assigned to
the same cluster across participants. In order to determine
group-level clustering solutions, spectral clustering was per-
formed on this consistency matrix, the result being a set of
cluster solutions (networks) exhibiting the most consistent
(stable) functional connectivity across subjects. Their analy-
sis produced seven networks, strikingly similar to those iden-
tified using both seed-based analyses and ICA, including the
default mode network, right and left fronto-parietal networks,
and a sensorimotor/visual network.

In their paper, Bellec et al. [130] also made use of con-
sistency matrices, in the context of a bootstrap approach to
k-means clustering of resting-state time series, which sought
to identify the most stable large-scale networks (clusters)
detectable at both the single-subject and group levels. Inter-
estingly, this approach, named “bootstrap analysis of stable
clusters (BASC),” also identified seven networks that were
remarkably similar to those identified in other studies, includ-
ing the default mode, sensorimotor, visual and fronto-parietal
networks. In addition, the authors drew attention to the fact
that good stability was observable at finer spatial scales (i.e.,
larger numbers of clusters), and the likelihood of good agree-
ment between solutions at these finer scales and the results of
high dimensional ICA analyses, such as that those of Smith
et al. [111] and Kiviniemi et al. [97].

Several other papers have directly focused on clustering
at finer spatial scales. These studies have demonstrated the
ability of clustering methods to identify the organization of
the brain at the local level, in terms of its division into func-
tionally distinct regions, rather than at the global level of
large-scale networks.

For example, Mezer et al. [132] applied the k-means clus-
tering algorithm to time-dependent measures of functional
connectivity to identify clusters in grey matter, white matter
and thalamus that closely matched known anatomical dis-
tinctions in terms of cytoarchitecture/microstructure (e.g.,
Brodmann’s areas) and morphology. Interestingly, Mezer
et al. concluded that their results were primarily driven
by non-functional contributions to the BOLD signal, such
as head motion, a suggestion that seems overly-pessimis-
tic in the context of their consistency with the resting-state
literature.

A more optimistic tone is struck in work by Cohen
et al. [115], who performed voxelwise hierarchical clus-
tering on the basis of the eta2 index, which quantifies the
pairwise similarity between voxels’ functional connectivity
profiles. Cohen et al. showed that, in a single participant,
hierarchical clustering was highly successful at partitioning
regions exhibiting different functional connectivity profiles,
thus likely constituting functionally distinct areas.

Discussion

In summary, clustering approaches applied to resting-state
data have proved highly successful at detecting known func-
tional, anatomical and architectonic subdivisions in the brain.
They are not without their flaws however, with the most
significant stumbling block being that almost all available
techniques require the user to define a number of clusters
(K) into which to partition the data. Because the true num-
ber of clusters is often unknown (referred to as the “cluster
validity” problem), researchers typically compute multiple
solutions, then use some metric of “goodness” to determine
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the “optimal” cluster solution from those produced. Unfor-
tunately, however, there is no single or best measure of solu-
tion optimality, and different studies have employed different
methods or sets of methods (e.g., silhouette distance; link-
age threshold; between-group similarity of clustering solu-
tions; minimized Ncut cost; information criteria). Ultimately,
it is unlikely that clustering will escape the involvement of
human judgment, as users have to assess the suitability of the
clustering results against known or hypothesized networks
or functional subdivisions. However, the advantage of clus-
tering approaches (as well as ICA approaches), is that this
human judgment is incorporated at a high perceptional clus-
ter- or network-level, rather than during the early-stage ROI
selection, as is required in seed-based approaches.

Pattern classification

In recent years multivariate pattern analysis (MVPA) (also
referred to as multi-voxel pattern analysis) has gained
increasing importance in fMRI data analysis (for reviews,
see [136,137]). Like other multivariate approaches (e.g.,
ICA, clustering) MVPA takes into account multi-voxel pat-
terns of brain activity or connectivity. Information contained
in these patterns can then be decoded by applying powerful
pattern-classification algorithms. This method thus incorpo-
rates spatially distributed patterns of activity into the analy-
sis, unlike univariate methods which treat every brain voxel
independently.

MVPA has become a valuable fMRI data analysis method
for classifying cognitive states and drawing relationships
between neural activity (or connectivity) and these states.
MVPA was mainly initiated in the domain of visual percep-
tion [138–140], but was extended to other types of mental
states as well [141]. MVPA has also been applied to the
study of neural coding [137,142], and utilized in the field
of memory research [143].

Technique

In MVPA, pattern classification algorithms assign objects to
classes using specific features. In the analysis of fMRI data,
these characteristics are generally patterns of brain activation
or connectivity and the classes are brain states or cognitive
states. Introductory guides are available [144,145], as well
as easy to use software [146].

In brief, application of the technique entails the following
basic steps:

1. Choosing the features that are descriptive of the objects
and a way to represent them.

2. Selecting a subset of these features to be used for clas-
sification.

3. Selecting the pattern classification algorithm.
4. Dividing of the data in two parts: a “training set” and

a “testing set”.
5. Utilizing the training set to train the classifier with the

features and the prespecified classes of objects. The clas-
sifier thus “learns” a functional relationship between the
features and the classes.

6. Testing of the classification algorithm for its general-
ization capabilities with the testing set, and measuring
the percentage of correct classifications.

Effective feature selection is necessary to prevent the clas-
sifier from overfitting the data or reducing complexity. This
can be done automatically by using mathematical methods
that select relevant discriminative features [147]. Another
possibility is manual feature selection (e.g., the limitation
to certain ROIs). This manual method is of course application
specific.

When choosing the proper classifier, certain issues should
be considered. In MVPA, a supervised machine learning
algorithm is usually used for pattern classification. Exam-
ples of such algorithms are support vector machines (SVM),
neural networks, or linear discriminant analysis (LDA). They
can be used to learn a functional relationship between the
features and the classes. Rarely unsupervised machine learn-
ers (e.g., clustering) are utilized. Unsupervised algorithms
find structure in data without prior knowledge about clas-
ses, but one cannot be sure whether it is the desired structure
that is found, so supervised learners are normally applied.
It is important to state that there is no single algorithm that
works best on all problems. There are some classifiers like
SVMs that achieve good results for a wide range of prob-
lems, but caution is required when relying on this. One
thing that can be incorporated when choosing a classifier
is knowledge about the functional relationship between the
features and the classes. If this relation is assumed to be
linear a linear classifier should be used (e,g., LDA, linear
SVM). In the non-linear case a technique that can account
for non-linearity (e.g., non-linear SVM, neural networks)
is advised, although this does not always lead to better
results [139]. Finally there are different ways to divide the
data into “training set” and “testing set” for testing the
generalization capabilities of the classifier. One often-used
possibility is cross-validation (see [144] for advantages of
this technique).

Applications

Multivariate pattern classification as applied to resting-state
fMRI data is still a young field of research. Similar to its
application in task-based studies, it has primarily been used
for disease-state prediction to discriminate between patients

123



298 Magn Reson Mater Phy (2010) 23:289–307

and healthy control groups on the basis of resting-state func-
tional networks.

In a study of attention-deficit / hyperactivity disorder
(ADHD), Zhu et al. used principal component anal-
ysis-based Fisher discriminative analysis (FDA) [117]
and pseudo-FDA [148] for classification. On the basis of
regional homogeneity as features, they were able to dis-
criminate between patients with ADHD and healthy subjects.
The results were also used to identify discriminative regions.
They achieved a high generalization rate when comparing
results to linear support vector machines and batch per-
ceptrons.

Wang et al. examined patients with an early stage of
Alzheimer’s disease using a linear classifier based on ICA
and FDA [149]. They put particular emphasis on the choice
of features for classification. Correlation coefficients of two
intrinsically anti-correlated networks were utilized as fea-
tures to distinguish patients with Alzheimer’s disease from
healthy controls. When comparing their classification results
to features based on whole-brain functional connectivity,
their approach outperformed the latter. They thus concluded
that the two anti-correlated networks play an important role
in early stages of Alzheimer’s disease.

Schizophrenia was investigated by Jafri et al. who used
a three-layer feed-forward neural network approach to
analyze ICA components [150]. Shen et al. utilized a non-
linear unsupervised-learning classifier for discrimination
and to map statistically relevant regions [118]. They used
a nonlinear learning technique (locally linear embed-
ding) to reduce dimensionality of the resting-state data. Then
C-means clustering was applied to discriminate between
schizophrenia patients and healthy controls. Classification
error rate was very low and it performed better than the lin-
ear classifiers it was evaluated against.

Major depressive disorder was also the subject of inves-
tigation. Craddock et al. used a support vector machine
classifier to distinguish healthy persons from depressed
ones [116]. Their focus was on testing different feature
selection methods. They incorporated filter and wrapper
feature selection and also reliability information. This reli-
ability measure improved the results of classification signif-
icantly.

These approaches demonstrate that disease-related differ-
ences in resting-state functional connectivity are feasible for
disease state prediction and for the identification of discrim-
inative regions of the brain.

Discussion

In summary, the application of MVPA has been successfully
expanded to the field of resting-state fMRI. While MVPA
has been primarily used in the small domain of disease state
prediction, it also has potential for wider applications in

addressing differential functional connectivity across general
brain states. MVPA has also proven promising in pharma-
cological studies where medications and placebos are con-
trasted.

The small number of studies involving MVPA and rest-
ing-state fMRI give rise to many open questions. For instance
there are a lack of comparative studies. While a portion of
the aforementioned studies do compare different features,
feature selection methods or classifiers in a very narrow con-
text, this is far from sufficient to assess various strengths
and weaknesses for different applications. For example, it
would be valuable to investigate if or how involved features
and methods could be applied to diseases other than those
included in each respective study.

Another important issue that has not yet been investigated
is the influence of spatial resolution. While spatial resolution
is a crucial factor for all fMRI approaches, it is of particular
interest for pattern classification which aims to detect subtle
patterns in the data. Many analyses described here, particu-
larly those involving networks and pattern classification, are
conducted at a relatively low-resolution scale (50–100 units).
Significant efforts and methodological advances are needed
to understand how such findings may generalize to higher
resolutions.

Graph theory

The mathematical field of graph theory has developed over
centuries to characterize various aspects of network structure.
Building on the functional connectivity approaches previ-
ously discussed, graph theory can be applied to the brain
by positing that ROIs (or single voxels) constitute verti-
ces, and the connections between them, edges. This insight
makes it possible to exploit the already existing graph the-
ory knowledge to analyze functional brain networks. As the
techniques thus far presented have predominantly focused
on mapping the spatial extent of networks, graph theory, in
contrast, provides tools to describe and characterize various
intrinsic properties of network configuration (e.g., efficiency
and modularity).

Technique

Given a selected set of regions from a resting-state fMRI
data set, each ROI corresponds to a vertex, the edges are
defined by the functional connectivity between vertices
(see Fig. 2). An edge can be assigned between two verti-
ces if the correlation coefficient exceeds a certain threshold,
or each correlation coefficient itself can be used to weight
each edge. A path in a graph is a sequence of vertices in
which all succeeding vertices are connected by edges, and
the length of a path is the number of edges traversed. The
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between regions
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a graph of
vertices and edges

A

C

B

Fig. 2 A schematic illustration depicting the transformation from ROIs
to graph representation. The distance between vertices A and C is 4,
as marked with the darkened line. The degree of vertex B is 4, A is 2,
and C is 1, as measured by the number of edges connecting to each.
Vertex A is part of vertex B’s neighborhood, but C is not, because it is
not directly connected to B by an edge

distance between two vertices of a graph is the minimum
length among all paths connecting them. The degree of a
vertex is the number of edges connecting to it. The (open)
neighborhood of a vertex is all vertices that are connected to
it by an edge.

Diestel offers a general introduction to graph theory [151].
For an overview with respect to applications to brain connec-
tivity, see the recent review by Bullmore and Sporns [152].
For implementation, a MATLAB-based “Brain Connectivity
Toolbox” is also freely available.11

Applications

Numerous measurements have been developed for the char-
acterization of graphs. We will describe local measures
(assigning values to each vertex individually) and global
measures (characterizing the graph as a whole).

One simple concept to measure the global structure of a
graph is the degree distribution P(k). This function gives
the likelihood that a randomly chosen vertex from a graph has
degree k. fMRI data have been found to have various degree
distributions: power law [153], exponential [154] and expo-
nentially truncated power law [155,156]. These three differ-
ent findings could be related to the different spatial scales
employed by the studies (ROIs vs. voxels).

Degree distribution offers information about the num-
ber of vertices which have a very high degree, termed:
“hubs”. Such hubs have been the topic of a recent study by
Buckner et al. [157], who found that regions of high “hub-
ness,” or centrality, were most prone to deterioration in indi-
viduals with Alzheimer’s disease. Eigenvector centrality
has also recently been applied to the analysis of fMRI data
using both linear correlation and spectral coherence as dis-
tance measures [158]. The computational advantage of eigen-
vector centrality allows for the inclusion of all voxels in the
brain.

11 http://www.brain-connectivity-toolbox.net/.

Degree distribution can also be used to explore the
vulnerability of a graph with random error and target
attacks [159]. In “random error”, a random vertex is repeat-
edly deleted from the graph, while “target attack” repeatedly
deletes the vertex with the actual highest degree. After each
step, the vulnerability of the graph to the attack is then mea-
sured using a variety of tools, among them: clustering coeffi-
cient, average path length, small-world properties, and local
and global efficiency, which will be further discussed below.

These concepts can be applied to probing the resilience
or vulnerability of the brain’s functional organization. For
instance, Achard et al. [155] showed that networks observed
in wavelet transformed resting-state fMRI data are more
resilient to target attacks than a random scale-free network
but equally resilient to random error.

One concept used to measure the local structure of a graph
is the local clustering coefficient, which checks whether the
triangle between a vertex and two connected vertices is closed
by an existing edge. The measurement counts all existing tri-
angles in the neighborhood and divides them by the number
of theoretically possible triangles. The clustering coefficient
has been interpreted as a measure of resilience to random
error [160], since if a vertex is deleted, its neighbors stay
connected. The local clustering coefficient can also be used
as a global local measurement by averaging over all vertices
of a graph.

Another measurement for the global topology is the aver-
age path length of a graph, which is the mean of all dis-
tances between any pair of vertices. The average path length
can be understood as a measurement of how well integrated a
graph is.

Measures of modularity describe how well a network is
divisible into separate components (“modules”) with high
internal connectivity, but sparse inter-module connections.
He et al. found that recognizable sensory and cognitive
systems a highly interconnected modules with sparser in-
termodule connections [121]. Shen et al. [161] analyzed
the modularity function by Newmann [162]—which finds
dense substructures in a graph by taking the ratio of the num-
ber of existing to theoretically-possible edges within a com-
munity— and two similar approaches called cut and Ncut
on resting-state fMRI data. They concluded that whole-brain
parcellation is feasible with the three approaches, and that
the Ncut algorithm is the appropriate way to do so.

Ferrarini et al. [163] described a different approach. Their
technique is based on a non-degree biased cluster coeffi-
cient [164], and the subsequent application of a hierarchical
clustering algorithm [165]. Using this approach they showed
modularity between frontal, subcortical, parietal and tempo-
ral regions of the brain.

Combining these measurements one can characterize a
network as being a small-world network. This term was
first introduced by Watts and Strogatz in 1998 [166], who
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demonstrated that certain real-world networks have a signif-
icantly higher clustering coefficient than their random coun-
terpart, without a significantly higher average path length.
They proposed that this could also be the case for many
other real-world networks—a hypothesis that was later con-
firmed by findings ranging from road maps [167], food
webs [168], airplane passenger traffic [169], metabolite pro-
cessing networks [170], mobile call graphs [171], ownership
links among German companies [172], and, of course, brain
networks [173].

There are certain empirical and theoretical reasons for
understanding the brain as a small-world network [119]: the
brain supports both modular and distributed processing of
information. Considering that network architecture under-
lies cognitive processing, a network with a small topology
is most efficiently configured for various scales of informa-
tion exchange: high clustering supports modular processing,
while short distances support distributed processing. Small-
world networks thus maximize efficient parallel processing,
minimize wiring costs, and are fault tolerant—all optimal
properties of a central nervous system.

Many studies have examined the small-world character-
istics of brain networks, and they will not all be reviewed
in detail here. For a comprehensive review of this particu-
lar topic, please see the superlative article by Bassett and
Bullmore [119]. Small-world analyses seem to have partic-
ular relevance for the study of disease states. For example,
Supekar et al. [174] performed a study on wavelet trans-
formed resting-state fMRI data acquired from patients with
Alzheimer’s disease. They observed a significantly reduced
clustering coefficient in patients with Alzheimer’s disease.
Furthermore, the clustering coefficient distinguishes partic-
ipants with Alzheimer’s from controls with high sensitivity
and specificity, suggesting the decreased small-world prop-
erty may be a viable diagnostic marker.

Nakamura et al. [154] used resting-state fMRI data
acquired at different time-points during recovery from
traumatic brain injury. They showed an increasing “small-
worldness” during the recovery process. Hayasaka and
Laurienti [175] made a comparison of small-world charac-
teristics between region-based and voxel-based brain net-
works. They showed that voxel-based networks have a higher
clustering coefficient ratio than region-based networks, sug-
gesting that voxel-based networks are more “small-world–
like”.

In addition to the “classical” small-world parameters,
local and global efficiency can be used to measure the net-
work’s ability for information transmission [176]. Although
these measurements are very similar, they have the concep-
tual advantage that they can deal with disconnected graphs.
Achard and Bullmore [177] showed lower efficiency in fron-
tal and temporal cortical and subcortical regions in an elderly
group of participants. From a more methodological perspec-

tive, Wang et al. [178] found different network efficiencies
depending on which atlas was used to determine ROIs.

Discussion

Graph theory offers a host of tools for characterizing brain
organization that extend beyond the network itself. While
graph theory is effective at analyzing topology, such as small-
world or modularity and even changing topology (by delet-
ing hubs), it is not appropriate for the analysis of real-time
dynamics. In a sense one also has to pay for the general-
ity of the various graph theory metrics with a loss of spe-
cialization. Due to the computational complexity of many
of the described approaches, their application to the whole-
brain set of voxels is not feasible, and they are in practice
applied to groups of voxels of a set of ROIs. Since these
regions of interest have to be defined a priori, the same prob-
lems of ROI selection outlined earlier apply. Undeniably,
graph approaches require assumption in order to reduce the
complexity of the network. Analytic approaches are com-
putationally difficult, and one must often work with heuris-
tics.

“Local” methods

Although the majority of analytic techniques for resting-state
fMRI data address functional connectivity, approaches that
address local activity are also possible.

Two such “local” measures are: the amplitude of low
frequency fluctuations (ALFF), which calculates the voxel-
wise magnitude of specific frequency bands in the frequency
domain, and regional homogeneity (ReHo), which is com-
puted only from the direct neighborhood of single voxels.
The measures are conceptually and practically straightfor-
ward, and are complementary to the other resting-state post-
processing tools.12

Amplitude of low frequency fluctuations

ALFF is defined as the total power within a defined low-
frequency range (for example: 0.01–0.1 Hz) [25,179]. Frac-
tional ALFF (fALFF), a measure with reduced sensitivity to
physiological noise, can be obtained by taking the ratio of the
low-frequency power to the sum across the whole frequency
range [123].

It should be noted that several physiological and neural
factors can impact low frequency fluctuations; for example,
Biswal et al. observed that low frequency fluctuations were
suppressed by hypercapnea [180], and that ALFF was higher

12 Both techniques can be implemented using the MATLAB toolbox
REST: http://groups.google.com/group/fc-toolbox.
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in gray matter than in white matter [16]. Some studies showed
that ALFF measures are susceptible to possible artifactual
findings in the vicinity of blood vessels and cerebral ventri-
cles [25,123]. Special care has to be taken when reporting
results of ALFF calculation near these brain areas.

Areas within the default mode network have been observed
to exhibit higher ALFF during resting-state than other
areas [25,123,179,181]. ALFF of visual cortices in eyes-
open condition was reported to be significantly higher than
in eyes-closed condition [181]. Zuo et al. revealed signifi-
cant and highly reliable ranking orders of ALFF among ana-
tomical parcellation units [25]. The method has also been
applied in studies which compared clinical populations to
healthy controls. Children with ADHD showed decreased
ALFF in inferior frontal cortex and increased ALFF in ante-
rior cingulate and left sensorimotor cortex [182]. Patients
with schizophrenia showed reduced ALFF in lingual gyrus,
cuneus and precuneus and increased ALFF in left parahip-
pocampal gyrus [183].

Regional homogeneity

Zang et al. [122] initially proposed ReHo to measure the
functional coherence of a given voxel with its nearest neigh-
bors based on the hypothesis that abutting voxels within a
functional brain area synchronize their metabolic activity
under certain conditions. Homogeneity is measured using
Kendall’s coefficient of concordance (KCC), a calculation
of similarity which uses ranking—a more stable measure—
rather than a linear statistical measure.

ReHo analysis is highly affected by the magnitude of spa-
tial smoothing and the size of the “neighborhood” (7, 19,
or 27 voxels, respectively) included in the analysis [122].
The pattern of resting-state brain activities obtained using
ReHo has been shown to be consistent with the default mode
network [122,184]. In a study of cerebellar seed-based func-
tional connectivity, He et al. integrated ReHo into the seed-
selection process by using the areas of high ReHo to derive
coordinates for masks regions [185].

ReHo analysis has been widely applied to the study of
brain diseases. For instance, in a group of patients with
schizophrenia ReHo values are decreased in bilateral fron-
tal, temporal, occipital, cerebellar posterior, right parietal
and left limbic lobes [186]. Boys with attention deficit
hyperactivity disorder showed decreased ReHo in frontal-
striatal-cerebellar circuits and increased ReHo in occipi-
tal cortex [187]. A study also found significant decreases
of ReHo in the posteromedial cortex of patients with
Alzheimer’s disease [188]. Decreased ReHo in frontal, tem-
poral, parietal lobes and increased ReHo in putamen, fron-
tal, parietal lobes were found in remitted geriatric depres-
sion patients [189]. Parkinson’s disease (PD) patients showed
decreased ReHo in putamen, thalamus and supplementary

motor areas and increased ReHo in cerebellum, primary sen-
sorimotor cortex and premotor areas [190]. Paakki et al. have
demonstrated decreased ReHo in right temporal, frontal and
bilateral cerebellar crus 1 areas and increased ReHo in right
thalamus, left frontal areas in patients with autism spectrum
disorders [191].

Another variation on the ReHo approach was imple-
mented by Uddin et al. to measure the network homoge-
neity (NetHo), which is the KCC for each voxel within a
pre-defined network mask [192].

Discussion

In summary, ReHo and ALFF methods are both easily imple-
mented, straightforward techniques which can be used to
characterize spontaneous local brain activity. While initial
innovations have made use of such voxelwise techniques
for subsequent functional connectivity analysis, much room
remains for exploration.

Conclusions

We hope that the above review has provided a flavor of each
of the many options for interrogating brain organization with
resting-state fMRI data, the assumptions and advantages of
each, and the kinds of questions and hypotheses that they
can be employed to evaluate. The release of the 1,000 Func-
tional Connectomes resting-state data consortium13 leaves
little want for analytic fodder [193]. Thus, the challenge in
study design may rather shift to cross-polinating methodol-
ogies. An exciting area of research has recently blossomed
which explores the effects of task and mental state on spon-
taneous “resting” brain activity [29,194–197].

Looking forward, the most promising resting-state
approaches will successfully integrate multiple sources of
information concerning the connectivity of the brain, for
example: task-based functional localization providing infor-
mation about co-activation, diffusion measures of structural
connectivity and known anatomical connectivity, as well
as data obtained with EEG or MEG, and the simultaneous
combination of EEG or optical imaging with fMRI. Several
studies have already made considerable strides in these direc-
tions (e.g., [62,111,198–204]), suggesting that researchers
will soon witness further exciting methodological advance-
ments that will elevate the field of resting-state functional
connectivity to the next level of excellence.
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