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Zusammenfassung
Stetig zunehmend stehen immer komplexere Datenmengen über unsere Welt selbst,
aber auch abstrakte Daten, wie beispielsweise hierarchische Filesysteme, zur Ver-
fügung. Wenn man versucht, in solchen Datenbeständen kleine Details gemeinsam
mit ihren massiven Kontexten zu verstehen, stellt der Computer ein großartiges
interaktives Werkzeug dar.

Die sogenannten verzerrungs-orientierten Detail-im-Kontext Techniken nutzen
vielfältige Verzerrungsfunktionen, um kleine Details im Vergleich zu ihrer Umge-
bung zu vergrößern, und beide gleichzeitig darzustellen. Die dabei üblicherweise
verwendeten Abbildungsfunktionen, wie Fischaugenverzerrungen oder Zentralper-
spektive, komprimieren jedoch Teile der abgebildeten Information auf anisotrope
Weise. Dies bedeutet, dass deren Formen lokal in verschiedenen Richtungen un-
gleichmäßig skaliert, also gestaucht oder lang gezogen werden. Hierdurch ist die
enthaltene Information bei großen Unterschieden in den dargestellten Maßstäben
nach einer Abbildung schwer oder gar nicht wiederzuerkennen.

Diese Arbeit untersucht zunächst die Anwendung von Verzerrungsfunktionen
aus der komplexen Analysis, die frei von solcher anisotroper Kompression sind,
für die Detail-im-Kontext-Problematik. Insbesondere der komplexe Logarithmus
wird wegen seinem Potential für die Darstellung von extremen Größenunterschieden
über viele Größenordnungen hinweg zur Entwicklung der sogenannten Komplex-
Logarithmischen Views herangezogen.

Für diese Interaktionsmethode wird zunächst die Frage beantwortet, wie ani-
mierte Übergänge zwischen der komplex-logarithmischen und einer normalen eu-
klidischen Darstellungsweise dazu beitragen können, eine Intuition für die Abbil-
dungsfunktion zu unterstützen. Hierfür nutzt die Methode mathematische Verbindun-
gen vom komplexen Logarithmus zu den erwähnten Verzerrungsfunktionen wie Fisch-
augenverzerrungen oder herkömmlicher Zentralperspektive.

Ein weiterer Beitrag besteht in der Entwicklung von Methoden zum beschle-
unigten Berechnen von komplex-logarithmisch verzerrten Darstellungen unter Aus-
nutzung von moderner Graphikhardware. Für vektorisierte geometrische Daten wer-
den dabei die sogenannten Vertex-Shader genutzt, während für gepixelte Luftbild-
Daten ein dem sogenannten Clipmapping ähnlicher Ansatz implementiert wurde,
der auf der Nutzung von Fragment-Shadern beruht.

Die entwickelte Methode wurde Teil der künstlerischen Installation “Globorama”,
und in diesem Rahmen einer breiten Öffentlichkeit vorgestellt. Des weiteren konnten
die erworbenen Kenntnisse über zweidimensionale Abbildungen zur Entwicklung
von einer anderen Interaktionsmethode, dem sogenannten Map Warping, beitra-
gen. Diese unterstützt Nutzer des öffentlichen Nahverkehrs in urbanen Umgebungen
durch eine Verbindung passend verzerrter geographischer Landkarten mit schema-
tischen Darstellungen der Netzverbindungen des Nahverkehrs.
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Chapter 1

Introduction
We are living in a very complex world. The data we are interacting with in these days
of the computer age is often very detailed. It is also often hierarchically organized,
with an increasing number of hierarchical steps and orders of magnitudes available,
and therefore contains very small interesting parts in very large overall contexts.

The rapid increase in computing power, while being one of the reasons for the
explosion in complex data we have to deal with, also offers a great opportunity to
aid us in the great undertaking of understanding our complex world. In connection
with modern interface technology, especially with graphical displays, it becomes the
most exciting extension of our brains to date.

This work delves into the subdiscipline of distortion oriented detail-in-context
techniques, the art and science of helping an observer to cope with the richness of
data by magnifying important parts while shrinking the overall overview. Com-
mon distortion techniques from this field like fisheye mappings and perspective ap-
proaches have somehow failed to be able to deal with extreme differences in scale
of Euclidean information. The reason for that seems to lie in the introduction of
anisotropic compression in all common mapping functions, which squishes informa-
tion together until it is not recognizable anymore.

This thesis presents the results of the exploration of mapping and interaction
approaches, driven amongst others by the mathematical field of complex analysis,
by brain research, and the analysis of artistic examples. The remainder of this
introduction contains the goals of this work, a short overview over the main results,
and the organization of the thesis.

1.1 Goal
At the onset of this work stood a growing fascination with complex analysis and
its application to mapping problems. Functions with complex variables can be
interpreted as mappings for the geometric distortion of two-dimensional information,
and as such possess certain interesting properties, the most interesting of which is
the absence of anisotropic compression in the resulting depictions. The first basic
question therefore was if such mappings were applicable for an improved interactive
depiction of details and their context.

Towards this end, the first obvious choice of a mapping was found to be the com-
plex logarithm, which has the potential to yield images which show single houses in
the context of the whole planet we are living on. To make such depictions interac-
tively applicable, a major question was how to employ modern graphics hardware in
order to speed up the mapping process sufficiently to yield high enough frame rates.
Another question was how it was possible to build an intuition for the resulting
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depictions, and how to interact with them. Last but not least, adequate application
areas had to be identified.

During the work on this topic, the opportunity presented itself to apply the
gained understanding of two-dimensional mappings towards a different exciting
problem, namely schematic maps of complex public transportation systems and
their embedding into the geographic space. The question here was how to bring
these two navigational spaces together interactively in order to aid passengers to
make informed decisions.

1.2 Main results

The main corpora of this research is the development of complex-logarithmic views
for the interaction with complex data.

• After a first application of the method for diverse abstract vector data, such
as hierarchical software systems, voronoi treemaps and geographical map in-
formation, the main application area is pixelated aerial imagery.

• For both kinds of data, suiting transitions between the ordinary euclidean
world and complex-logarithmic layouts were found, linking this mapping to
the fisheye views on the one hand, and the ordinary central perspective on
the other, and thereby helping viewers to understand the properties of the
mapping.

• For vector data, geometry shaders were employed in order to speed up the
distortion process sufficiently for interactive framerates.

• For aerial imagery, fragment shaders in connection with an extended clipmap-
ping method served the same goal. This method was developed within the
scope of a supervised Master thesis [53] in our Computer Graphics and Media
Design group.

• Interaction operations for an ordinary desktop setup were developed in order
to navigate and explore the aforementioned highly complex data.

• The visualization of aerial imagery was incorporated in the interactive artistic
and research installation “Globorama” in a highly successful cooperation with
the Center for Art and Media in Karlsruhe and the Human-Computer Inter-
action group in Konstanz. The installation was presented publicly on various
occasions, and made it possible for visitors to experience our world through a
complex-logarithmic perspective.

The aforementioned mapping problem dealing with public transportation data
was treated in a fruitful cooperation with the Research Project “Visual Navigation”
and the Algorithmics Group in Konstanz, yielding an appropriate warping method
as well as a novel interaction method.
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1.3 Publications
Parts of this thesis were published in the following publications:

[10] Böttger, J., Brandes, U., Deussen, O., Ziezold, H., Map warping for the an-
notation of metro maps, IEEE Computer Graphics and Applications, Vol. 28,
No. 5, pp. 56–65, 2008.

[9] Böttger, J., Balzer, M., Deussen, O., Complex logarithmic views for small
details in large contexts, IEEE Transactions on Visualization and Computer
Graphics, Vol. 12, No. 5, pp. 845–852, 2006.

[38] König, W., Böttger, J., Völzow, N., Reiterer, H., Laserpointer interaction
between art and science, Proceedings of the 13th International Conference on
Intelligent User Interfaces, Canary Islands, Spain, pp. 423–424, 2008.

[12] Böttger, J., Preiser, M., Balzer, M., Deussen, O., Detail-in-context visualiza-
tion for satellite imagery, Computer Graphics Forum, Vol. 27, No. 2, pp.
587–596, 2008.

[11] Böttger, J., Brandes, U., Deussen, O., Ziezold, H., Map Warping for the An-
notation of Metro Maps, Proceedings IEEE Pacific Visualization Symp., pp.
199–206, 2008.

1.4 Organization
The organization of this thesis is as follows:

In the next Chapter 2, an overview over the different motivations for this work
is given. A major force driving this research is the diversity and complexity of
available data in our time, ranging from geographical knowledge about the real
world to abstract corpora. The methods developed in this work hereby are strongly
influenced by what scientists outside of the field of computer science, artists and
brain researchers do.

Chapter 3 reiterates relevant existing methods from the computer science field of
human-computer interaction. While many techniques exist dealing with the relation
between a focus on details and an overview, the focus here lies on the different
geometrical distortion oriented detail-in-context techniques.

Chapter 4 analyzes the properties of the basic mathematical mappings which
underly almost all of these techniques. The majority of distortion oriented detail-
in-context techniques can be grouped together by the distortions they produce,
namely either central perspective or fisheye-like distortions, both of which introduce
anisotropic compression in the resulting depictions. In the second part of the chap-
ter, we discuss conformal mappings taken from the mathematical field of complex
analysis, and especially the complex logarithm, a mapping for extreme differences
in scale free of anisotropic compression.

The complex logarithms first application for the interactive visualization and
navigation of complex abstract two-dimensional vector data, and the implementation
issues associated with them is the subject matter of Chapter 5.
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Chapter 6 takes a look at the application of complex logarithmic views for the
visualization of and interaction with aerial data, which is readily available over many
orders of magnitude nowadays.

Chapter 7 describes the art and research collaboration “Globorama”, which em-
ploys a complex logarithmic perspective to enable viewers to browse such aerial
imagery and panoramic photographs.

Chapter 8 deals with mapping methods for the navigation of complex urban
public transportation systems embedded in their environment, and grew from the
previously acquired knowledge. A technique to warp geographical information and
their application resulting in an interactive method is explained.

This thesis ends with a conclusion and outlook to future work in Chapter 9.



Chapter 2

Motivation
The driving force behind the need for the interaction techniques for the visualization
of details and their context in this work is the abundance of very complex data that
we have to deal with in our world today. A prime example of this is computerized
data about our world, from the microscopic dimensions of elementary particles up to
the distribution of clusters of galaxies. Especially exciting is the recent abundance
of digitized geographical data, where nowadays maps and aerial imagery are readily
available for our whole planet, containing details like single houses and streets. This
data, but also abstract data about, for example, the contents of a harddrive or
complex software systems often are hierarchically organized or organizable.

Many techniques for the computerized visualization and interaction with such
complex data exist, some of these techniques and their problems are the subject of
the next chapter. After introducing typical examples for complex data, this chapter
serves to gain inspiration by looking at how visual artists and scientists outside of
the human-computer interaction community deal with visualizing such richness of
details, and how the human visual system itself copes with the task of being able to
discern details while still keeping an overview.

2.1 Complex Data

Since the advent of the digital computer, the exponential growth of the complexity
of this machinery [46] has resulted in the availability and treatability of more and
more complex corpora of data, describing our real world as well as more abstract
concepts. Although understanding these data is difficult, the computer in connection
with graphical displays is a great tool to aid in their comprehension. The reason for
that is, that the human visual system is the broadest connection between the brain
and the outside world. The fields of Visualization and Information Visualization
deal with the question of how to depict real world and abstract data. This section
describes typical examples with very high complexity of their subject matter.

2.1.1 Real world

One way how humans look at our universe is by thinking in hierarchies; things con-
sist of smaller parts, which in turn consist of other, even smaller parts. Human
knowledge extends to a steadily growing range of magnitudes, which grows on two
fronts: The largest known objects and the smallest ones. In ancient history hu-
mans without sophisticated tools had a very limited understanding of their close
surroundings, anything beyond the unaided senses was subject of speculation.
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Figure 2.1: Our world from the very smallest things to its entirety.

On the macroscopic frontier, it was only necessary to understand the world for
as far as an unequipped human could look or walk. Improvements in travel tech-
nology then necessitated cartography in order to expand the recording and passing
on of knowledge which described our planet, culminating in a complete description
of its spherical form. Telescopes, space travel and other tools such as cosmic sim-
ulations made it possible to gain knowledge which surpassed our understanding of
the universe beyond this boundary, resulting in our current view of our macroscopic
world.

On the other, microscopic frontier, the first humans’ understanding was limited
by the resolution of their visual system. The invention of the microscope lead to
advances in biological knowledge of cells and previously invisible organisms. Chem-
istry and physics use some very large tools to get to our current understanding of
atoms and smaller elementary particles, and today scratch on even more fundamen-
tal building blocks of our universe.

Analogously to the growth of knowledge, the modern world has people interacting
with more and more complex data as well. In our times of globalization, we need
an understanding of large scale geography as well as the very small details in our
surroundings. This is reflected in the way we look at our world mathematically.
Starting from ancient measuring systems, we have today arrived at a system which
reflects the fact that there are many steps of recursive containment of smaller things
in larger things, using orders of magnitudes to measure our world. There are many
orders of magnitude between the smallest things that we deal with in close proximity
and our planet.

It used to be difficult to access data of the necessary richness of detail for the
whole planet, not the least due to the size of such a data base. Recently, modern
mapping technology and the advent of the internet have resulted in interactive online
databases like Google Earth [22] or Microsoft Virtual Earth [45]. These contain
seamless imagery of all orders of magnitude from the whole planet down to the scale
of single houses, and transmit only a subset of data the user is interested in at a
point in time.

The available data has the property that it contains interesting and recognizable
details on every level of magnification. In case that such details are not evident
in the imagery itself, like in the view of a mostly uniformly green area of forest,
supplementing this imagery with labels like streets and place markers makes it easily
browsable.

2.1.2 Abstract data
Modern computing technology resulted in an explosion of abstract data. A classical
pre-computer era example for such data describing our world is the phylogenetic
tree, which classifies the biological realm of living organisms. Many other data are
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Figure 2.2: Software like Microsoft’s Virtual Earth shows how complex our planet
is. Starting from a view of the whole earth on the top left, every following view is
magnified by a factor of two. In the last view on the bottom right, the University
of Konstanz is visible (from [45]).

not even linked to any real counterpart, but result from mathematical concepts and
the like.

Since our real world is organizable hierarchically, thinking in hierarchies comes
natural to humans. No wonder, therefore many of the data organization schemes in
computer science are hierarchical es well. Prime examples here are filesystems (see
Figure 2.3 left), where folders contain other folders and files, or large object oriented
software systems, which are organized in packages, subpackages, classes, subclasses,
and finally single variables. If no hierarchy exists in a body of data, often one can be
extracted using clustering methods. With growing amounts of data, these hierarchies
are getting deeper. Like for our real world, it is often necessary to understand the
relation between and the connection of the smallest and the largest entities.

For the visualization of such abstract data, often real world metaphors are used
in order to find a suiting layout. For example, text corpora have been visualized
as landscapes with hills and valleys, thereby evoking the association of land masses
connected to each other [80] (see Figure 2.3 right). As another example, software
systems have been visualized as cities and islands [4]. Such a layout then can provide
desirable properties as in the real world data above, for example the right granularity
of details on every level of magnitude.
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Figure 2.3: Treemap view of a complex file hierarchy (left, from [30]). Text corpora
visualized as landscape (right, from [80]).

2.2 Visual Art and Science

To illustrate the relations between such very differently sized entities as described
in the previous sections is a long standing concern for artists and scientists. Before
the advent of computers, these illustrations were non-interactive. Many of the illus-
trations in this section served as the original inspiration for and echo the detail-in-
context methods and interaction techniques in the next chapter. These techniques,
however, suffer from several shortcomings when applied to the now available, very
complex data described earlier. As we will see, to keep the connections between the
different orders of magnitude intact while magnifying parts of the information is a
challenge. Taking a look back here serves as a foundation to develop new improved
methods.

2.2.1 Zooms

The first group of illustrations of different orders of magnitude are the zoom-like
ones. These consist of a series of images of the same size, magnifying a certain
point in space very differently. The first versions of this were published in the form
of books, with large steps in scale, typically by a factor of ten, between the single
images. With technology available, the number of images was increased, in order to
yield an animation.

Kees Boeke [6] published in 1957 a book showing a series of images of a girl
sitting in her garden from very different distances. On the very extremes, he showed
the fringes of the then known universe, heaps of galaxies on the one end, and an
atom on the other end. Leafing through the book, it is possible to mentally connect
an image with its successor and predecessor, because they show the same content.
Overall, the book leaves a great impression of how small or large things are compared
to each other, and how complex the world we are living in is.

The Eames took the book as a guide for their famous book [48] and movie [17]
“Powers of ten”, which is still often shown in school to introduce the topic of orders
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(a) (b) (c)

Figure 2.4: Boekes book shows a girl sitting in the Netherlands from very different
distances (from [7]).

(a) (b) (c)

Figure 2.5: The Eames’ video “Powers of Ten” shows an animation very similar to
Boekes book (from [17]).

of magnitude in our measuring system. The animated version of Boekes vision of our
world leaves an even more exhilarating impression of the complexity of our world.

With the advent of modern imaging techniques, NASA [66] constructed updated
versions of parts of the Eames movie called “Great Zooms” with various well known
points on our planet as starting point. The resulting animations use satellite im-
agery, and are especially effective if the depicted location is well known to a viewer.

2.2.2 Magnified Center of Interest

Series of images are obviously able to depict very different sizes consecutively, but
a viewer has to mentally connect those images over time. Another influence on
nonlinear magnification of centers of interest stems from the observation of natural
phenomena which allow for the simultaneous viewing of small and large parts of
our surroundings. Obviously, using magnifying glasses lead to a kind of integration
of the magnified information with its surroundings, and served as archetype for
later interaction techniques. But more interestingly, the observation of mirrored
surfaces already lead in the Renaissance to manieristic depictions using nonlinear
perspectives. The resulting nonlinear perspective from a mirrored sphere leads to
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fisheye views, which have interesting properties, and came to be easy to produce
after the invention of photographic lenses. This view of our world lends itself nicely
to portraying our world with a very enlarged center of interest, while keeping it
seamlessly connected with its surroundings. It is also intuitively understandable,
since the surroundings are depicted in a perspective fashion, resembling a horizon
view (see Figure 2.6 left).

Another artistic attempt to depict a subjective world view stems from carto-
graphic methods. It is easily possible to manually draw a map with very different
scales for illustrative purposes. A well known example is Wallingfords “A New
Yorker’s idea of the United States of America” (see Figure 2.6 right), which carica-
tures the view of America as seen by a New Yorker.

Figure 2.6: Fisheye-like view of a village with its surroundings (left). Wallingfords
“A New Yorker’s idea of the United States of America” (right). Both images from
[26].

2.2.3 Nontraditional Perspective
Several other artists and scientists chose a perspective-like approach in order to
squeeze several orders of magnitude in a single image. It is interesting to note that
most of these illustrations employ a view of the world which puts the smaller objects
in the image on top of the larger ones, like they usually are e.g. in a traditional
central perspective landscape. The reason for that seems to be, that we are used
to this property from our natural surroundings. The placement of information is
accordingly an important depth cue for our visual system [47].

Saul Steinberg uses a special form of perspective to show a New Yorker’s View
of the World in his landmark illustration from 1976 [73] (see Figure 2.8). The illus-
tration contains details like people and letterboxes as well as countries like China
in one seamless view. Seemingly very similar to a central perspective, it is interest-
ing to note, that the shown information does not align towards a single vanishing
point, but rather to multiple such points, which are arranged in a vertical fashion.
Steinberg used areas of uniform appearance, like the Hudson and the Pacific, for
transitioning between these multiple vanishing points.
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Figure 2.7: Log-
arithmic Map
of the Universe
(from [24]).

Figure 2.8: Steinbergs View
of the World from 9th Avenue
(from [73]).

Figure 2.9: Zoom Into the
Human Bloodstream (from
[50]).
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The Logarithmic Map of the Universe [24] (see Figure 2.7) shows our planet
Earth in the context of the whole observable universe. Since there lie many different
orders of magnitude in size between these two entities, the physicist Gott and his
colleagues use the complex logarithm for the simultaneous depiction of everything.
The resulting map is constrained to one viewpoint, and does not show any detail
on the earths surface, but is otherwise very similar to snapshots of some of the
visualizations in this work. It is noteworthy that the used mapping guarantees that,
for example, planets are depicted as circular items, since the employed mapping is
conformal.

Linda Nye and the Exploratorium Visualization Laboratory show the connection
between a man and the atoms in his blood in their award-winning illustration “Zoom
Into the Human Bloodstream” [50] (see Figure 2.9), connecting the different orders
of magnitude in between with a nontraditional perspective. The illustration is one
of a series of similar pictures. Other illustrations show atoms on the wing of a
butterfly, and in a computer chip.

All these non-traditional perspectives are very high in comparison to their width;
the larger the differences in scale, the more extreme this ratio gets.

2.3 Perception

Apart from how artists and scientists deal with the problem of squishing information
with very different scales in one illustration, the human visual system also provides
inspiration towards this subject matter. It is namely a well known fact, that our
visual process employs a detail in context technique of its own in viewing our world.

Figure 2.10: Connection from the retina to the primary visual cortex by the optic
nerve, the laterate geniculate body, and the optic radiation (from [28]).
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The parts that we are directly looking at are “magnified” compared with the
visual periphery in our brain, which therefore commits more computing power for
the things it is more concerned with, while still keeping an overview. This enables us
to still notice the tiger jumping at us from out of a tree while reading our newspaper.
The implementation of this technique is very interesting and relevant to the research
in this work, and therefore recapitulated in this section.

2.3.1 Physiological Background

It has been long known, that we view our world by means of photosensitive receptors
in our retina, which are connected to the brain by the optic nerve. Microscopic
studies were able to show [28] that these receptors are not evenly spread, but much
denser in the so-called fovea in the center of the retina, where the parts of our
environment that we fixate are projected on. Modern physiology and neuroscience
shows, that this difference in density is reflected in the primary visual cortex in the
back of the brain.

Figure 2.11: Stimulus and autoradiograph of activity patterns in the primary visual
cortex of primates. Whith the fovea fixated on the middle of the stimulus pattern on
the upper left, the left hemisphere of the primary visual cortex exhibits an according
pattern of increased metabolism resulting in the darker areas in the lower part of
the image (from [28]). The concentric circles as well as the lines from the middle
outwards map towards two sets of almost parallel lines in the cortex.
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The primary visual cortex is organized in a two-dimensional manner like the
retina, which means that it is only a few millimeters thick, but has an area of
many square centimeters, which are folded in in the back of the brain. The visual
cortex is connected to the retina by the optic nerve, the lateral geniculate body and
the optic radiation (see Figure 2.10). Interestingly, there exists a point to point
correspondence between small areas on the retina and small areas on the primary
visual cortex. Accordingly, injuries to parts of the primary visual cortex lead to a
sharply defined loss of vision in the visual field. The mapping between retina and
cortex is, with the small anatomically founded exception of cuts between the left
and the right hemisphere, topology preserving (see Figure 2.11). This means, that
neighborship relations are kept intact. However, the magnification of the mapping is
far from constant. Like mentioned earlier, the magnification factor strongly depends
on the distance of the part of the retina from the fovea. The fovea itself is magnified
very strongly compared with the periphery, which is represented much smaller in
relation (see Figure 2.12).

Figure 2.12: Another schematic depiction of how small the area to which the pe-
riphery is mapped is in comparison to the rest of the primary visual cortex (from
[28]). The stimulus on the left is mapped to the primary visual cortex on the right.
The latter is a flat structure, which can be unfolded to the shape shown here. The
small bright area of the stimulus in the middle around the fovea maps to more than
half of the area of the visual cortex.

2.3.2 Cortical Magnification
Daniel and Whitteridge [16] coined the term cortical magnification to describe this
fact for their studies of the visual system of primates. The cortical magnification M
is the ratio between the size of a small piece of primary visual cortex in millimeters
and the corresponding angle of visual field that it represents. Daniel and Whit-
teridge conducted their studies using monkeys, whose visual system is very similarly
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organized to the humans’. Their findings showed that the cortical magnification is
approximately isotropic, and therefore only depends on the distance from the fovea
e as follows:

M (e) ∼ 1
e

(2.1)

Schwartz [63, 64] uses as approximation of the mapping a complex logarithmic
mapping, which maps a complex number z to another complex number f :

f (z) = k · log (z + a) (2.2)

Here, a and k are constants used to match the mapping to experimental findings.
The approximation does not take into account the three-dimensional shape of the
cortex. The derivative of the function is very similar to the experimentally estab-
lished linear dependency of the magnification from the distance to the fovea. The
mapping is also conformal, and therefore angle-preserving and free of anisotropic
compression (see Figure 2.13).

This is very notable, because it hints at the fact that keeping details locally un-
compressed seems to be important for the further processing of visual information in
the brain. The human brain obviously works in a way which prioritizes this property
even over the complete preservation of topology. This seems to be connected to a
basic problem in magnifying flat information, which is reverberated throughout the
following chapters.

Figure 2.13: Approximation of the mapping from the retina (on the left) to the
primary visual cortex (on the right) using the complex logarithm. The small black
square on the retina next to the gray dot, which represents the fovea, is mapped to
the large black area on the cortex, while the other black square in the periphery is
mapped to an extremely small area. Note that the right angles at the crossings of
the gridlines are not changed by the conformal mapping.
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2.4 Conclusion
This chapter has shown the major driving forces behind this work: The abundance
of diverse highly complex data, and artistic and scientific approaches to illustrate
details of these data and their respective contexts. These attempts already show
that there are basically two groups of mappings, the fisheye-like mappings and per-
spective, in order to show both in one seamless image.

Another great inspiration for this work are the findings from brain researchers,
which show how the visual system deals with details in their context. As will
be shown, their use of the complex logarithm and complex analysis in general to
approximate the visual systems mapping from the retina to the primary visual cortex
was a great influence for the methods developed in the following chapters.



Chapter 3

Detail-and-Context Approaches
This chapter deals with different approaches to cope with interaction with highly
detailed data. Such data contains details which are too small to be easily readable
once we try to fit the whole information space at once on a display. Examples for
such data have been introduced in chapter 2.1, and will be found in later chapters,
but include satellite data and abstract data sets like hierarchical graphs.

For such data, interaction paradigms like zooming and panning, and different
approaches to show several disjoined views with different scale simultaneously exist.
These are the subject of the first Section 3.1.

The focus of this work lies on techniques which keep the connections between
details and their context intact. Therefore the manifold of distortion oriented detail
in context techniques in Section 3.2 take up most of the space in this chapter.

3.1 Combinations of undistorted views

The need for these detail in context techniques follows from the fact that details
have to be shown in a certain size in order to be visually recognizable. The whole
information space in the same scale does usually not fit in the available space of the
screen, thus it is necessary to use a smaller scale to show the whole context.

3.1.1 Zooming and Panning
The classical interaction paradigm for very complex data is zooming and panning.
Here, the scale is changed over time, in order to subsequently observe details and to
gain an overview. Both are not shown simultaneously.

Zooming and panning leaves shapes intact, but the context is lost when details
are enlarged, and the details are too small to be recognized when the entire context
is displayed.

Subsequently, when moving from one detail to another, it is necessary to zoom
out, pan to another location close to the target detail, which is presumably not visible
yet, and zoom in on the target. During this zooming in, the target is wandering
towards the edges of the view, if it is not precisely in the center. This makes it
necessary to recenter from time to time by iteratively panning and zooming.

3.1.2 Simultaneous View Combination
One widely used approach to show both, detail and context, simultaneously is to
use separate windows for the detailed view as well as for the overview, thus breaking
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Figure 3.1: Combinations of detail and context views. Simple in-place magnification
(from [71]). DragMag (from [79]). Macroscope (from [42]).

Figure 3.2: Flip Zooming (from [5]).

the connections between a detail and its context. However, the need to switch back
and forth between these different views puts a mental strain on the user.

There have been several attempts to ease that burden by combining an overview
and a detailed view. The basic problem, according to Spence [71], is that magnifying
an area of the overview makes it impossible to simply fit that area into the context
view in place. Therefore, occlusion on the fringes occurs if the magnified view
is displayed in-place. Attempts to help a viewer to get over this discontinuity by
interactive placement of the magnified area and graphical notation of the connections
[79], or by superimposing the contextual and the magnified view with transparency
[42], do not completely solve the problem of additional mental load to connect the
two views convincingly (see Figure 3.1).

3.1.3 Flip Zooming
Other approaches, like Flip Zooming [5] (see Figure 3.2), use discontinuous map-
ping functions which leave details and their context uncompressed. However, these
approaches are restricted to domains, like text display, where natural discontinu-
ities between entities make it possible to introduce cuts in the mappings without
destroying the underlying information. In the case of text display, such natural
discontinuities occur between the single pages of a longer text.

The decoupled nature of such data makes it possible to optimize other criteria
for display, like keeping the ordering or the relative placement of entities to a central
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Figure 3.3: Perspective view in Microsoft’s Virtual Earth [45]. Note that although
the data is rendered using elevation data, the textures towards the horizon are
anisotropically compressed.

entity intact. However, for complex data, people seem to use the relative placement
of the entities and the resulting shapes for orientation. These more complex shapes
tend to get destroyed by these methods, which makes finding known configurations
and clusters of entities difficult.

3.2 Distortion Oriented Techniques

The distortion oriented detail in context techniques, on the other hand, employ a
different approach. They are used in an effort to show both, detail and context, in
one seamless visualization, by mapping them non-linearly from an original space to
a display space.

The mappings used for this task are supposed to satisfy several, some mutually
exclusive, properties. In particular, it is desirable to keep shapes, rotations, con-
nections and angles constant, while changing the scale of parts of the underlying
information independently. As we will see later in chapter 4, this is a mathematical
impossibility, and therefore such a scale changing distortion always changes several
properties of the depicted information.

There exists a variety of mappings used for the detail in context problem. The
following subsections list several relevant approaches. Most of the approaches can
be classified to belong to two classes of mapping functions: They either use some
form of central perspective, or some form of fisheye-like mapping which leaves the
connections around a magnified center of interest intact. All the common distortion
oriented detail in context techniques for Euclidean spaces use mapping functions
introducing anisotropic compression.
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Figure 3.4: Bifocal View (left, from [72]). Original intuition behind the approach
(right).

3.2.1 Central Perspective
One often used mapping in the field of satellite imagery is the ordinary central point
perspective. This perspective, employed for two-dimensional data, is akin to looking
at a plane from an angle.

The mapping leads to information in the foreground being displayed at a larger
scale than the contextual information in the background. Although it is advanta-
geous that the mapping is intuitively graspable, it only shows the context in one
direction from the focus of interest. Everything to the sides and behind the vir-
tual camera is cut of by the fringes of the display. Another drawback is, that
only information along a single horizontal line is locally uncompressed, and that
the anisotropic compression grows infinitely. Information that is very far away is
mapped to a line, the horizon, as can be seen in Figure 3.3, and later more clearly
in chapter 4.

3.2.2 Anisotropic Compression
Spence [72] was the first to show magnified details and demagnified context inter-
actively on a computer in one seamless visualization. The original intuition behind
his method was to imagine a long strip of paper, which contains diverse information
like documents, appointments and other items.

This strip of paper is then folded over two imaginary vertical guiding posts (see
Figure 3.4 right), and viewed with an orthographic perspective projection. This
leads to information between the posts being displayed as usual, while information
outside of this area of interest is viewed at an angle, and therefore compressed in
order to fit the screen.

The first versions of the so-called Bifocal Displays (see Figure 3.4 left) accordingly
divided the display in three different areas, one uncompressed for the detail view,
and two areas on the left and on the right side that seamlessly connected with the
detail view. The areas on the side of the display use the purest form of anisotropic
compression allowing the context to fit on the screen by shrinking the underlying
information in the horizontal, but using the original scale in the vertical direction.

Spence also extended the basic thought to truly two-dimensional information
by applying the mapping method mentioned before in the horizontal and vertical
direction simultaneously. However, using the method in two dimensions leads to
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Figure 3.5: Perspective Wall (from [44]).

zones in the corners of the display which are compressed very differently compared
to other details to the sides, above or below the focus. The method is therefore well
suited for almost linear information, like the imagined paper strip or time dependent
data, or for information layouts like tables, which are organized in a two-dimensional
grid. This visualization of tables was developed further by Rao and Card [54].

It is interesting to note that Spence in 1980 already anticipated the Perspective
Wall as well as some of the interactive fisheye transformations, but simply lacked
the computing power to implement them on the hardware available to him at that
time.

3.2.3 Perspective Wall
The Perspective Wall [44] (see Figure 3.5) uses a very similar approach to the original
Bifocal Display. The method basically is a re-implementation of Spence’s method.
However, instead of using an easier to calculate orthographic perspective for the pro-
jection of the conceptual paper strip, the method uses true central point perspective.
In the more then ten years between Spences original concept and the publication
of the Perspective Wall, computing power increased enough to implement the per-
spective mapping, as well as other depth cues like light and shadows on an ordinary
workstation.

The authors claim that this mapping alleviates the problem with compression,
since the used perspective shows information placed at a distance to be smaller,
in the same way as is well known from nature and is intuitively graspable for hu-
mans. Nevertheless, perspective mapping still introduces compression with growing
distances. In the published examples therefore the information space usually is not
very large, and the information strip is cut off before the detrimental effects of the
perspective mapping are rendering the information unrecognizable.

It is possible to look at the difference between the original Bifocal Views and the
Perspective Wall as a difference in distributing the anisotropic compression: While
the former distributes this compression evenly over the whole context area, the latter
leaves information closer to the area of interest less compressed than information
items farther away.
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Figure 3.6: Space folding (from [18]).

Figure 3.7: Lorenz et al. (from [43])

Like in Spences original approach, showing information above or below the focus
is not performed, and the method is only suited for almost linear information.

3.2.4 Space Folding

Elmqvist et al. presented another approach [18] to use perspective mappings for the
interaction with complex data. Their approach is very similar to the perspective
wall, but instead of perspective panels at the fringes of a focus of interest uses
perspective panels to connect multiple foci (see Figure 3.6).

3.2.5 Horizonless Perspective

Lorenz et al. [43] use distorted perspectives to interact with three-dimensional
geographical data. As can be seen in Figure 3.7, one of the problems improved by
their approach is the compression of semi-flat information towards the horizon in
a central perspective mapping. The authors counter this by tilting the geographic
plane at a distance towards the camera, and connect the two zones by a transition
area.
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Figure 3.8: Typical Fisheye Distortions: Orthogonal (left) and radial (right) case
(from [34]).

3.2.6 Fisheye Distortions

A different class of mapping functions are the so-called fisheye lenses. The car-
tographers Kadmon and Shlomi [31] developed mappings for the magnification of
thematically interesting parts of geographic maps, which keep all the connections
around a detail intact. Although implemented algorithmically, at that time, comput-
ers still were too slow for interactive adaption of the resulting depictions. Sarkar and
Brown later developed interactive Graphical Fisheye Views [61] for the exploration
of complex two-dimensional graph layouts. Keahey [32, 33, 34] refined fisheye map-
pings for the interactive display of pixelated imagery and more complex data. For a
mathematical framework for this kind of transformations, see Leung and Apperleys
review [41].

Fisheye mappings derive from the intuition, that for the magnification of an area
of interest it is necessary to push the surrounding points outwards, away from this
center, in order to create space for the enlarged information. Therefore, the fisheye
mappings use a distance function that maps every point around a detail to a new
point in the same relative direction. Then, using different distance metrics and
functions, it is possible to generate different mappings, which resemble the effect an
optical projection using a very wide angled lens would have, as well as rectangular
distortions, which are more suited for example for text display.

Such fisheye mappings have to introduce compression, because they are con-
strained since the context around the enlarged detail has to remain closed. For
radially symmetrical cases, the magnification factors along concentric circles are
fixed because the circumference of the circles around the center is fixed by their
radius. Figuratively speaking, the information lying on these circles literally has
to stretch in order to fill the whole circle. Consequently, parts of the information
cannot be scaled with the same factor in all directions, and will be anisotropically
compressed (see Figure 3.8).

The differences in metrics and functions only influence how this compression is
distributed. Using the Manhattan metric, for example, leads to the above mentioned
rectangular distortions. Using the Euclidean distance exhibits circularly symmet-
rical mappings. The distance function can influence whether the compression is
distributed equally around the focus of interest, or grows towards the fringes. It
is also possible to leave parts outside of a certain radius uninfluenced by the map-
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Figure 3.9: Document Lens (from [57]).

ping, and to use a distance function to smoothly integrate a magnified focus in that
context.

3.2.7 Document Lens
The Document Lens [57] (see Figure 3.9) is another approach that uses perspective
mapping functions: It uses a mapping of the information space to a truncated
rectangular pyramid, and a subsequent perspective projection towards a viewing
plane. The camera follows the focus of interest in order to avoid occlusion. The
technique therefore always exhibits a rectangular magnified area of interest, and four
areas connected around this uncompressed detail view showing the context. In this
way, it uses the display space more efficiently than the Perspective Wall, and allows
for showing the context above and below the detail area. However, the problems
with the introduction of anisotropic compression in the process remain.

Beyond a certain magnification factor, the authors report that, like with the
fisheye views, the information becomes unreadable, and the context display is es-
sentially useless. This occurs when the area of interest occupies most of the viewing
space.

The resulting mappings are not symmetrical. An advantage at the time of publi-
cation over some of the generalized fisheye views was the use of affine transformations
for the expedient implementation of the technique.

3.2.8 Three-Dimensional Pliable Surfaces
Sheelagh Carpendale [13, 14, 15] presented a new approach employing modern graph-
ics hardware for the presentation of details in their context. She uses the perspective
transformations built into this hardware in order to produce fisheye-like transforma-
tions like Keahey. The basic intuition behind the method is to map the information
on a three-dimensional sheet, and to move the areas of interest of this sheet closer
to the perspective camera, in the process magnifying them. Since she stresses the
continuous integration of magnified foci into their context, she chose to use gaussian
functions for this three-dimensional distortion. Because moving grid points along
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Figure 3.10: Three-Dimensional Pliable Surfaces (from [15]).

Figure 3.11: Non-linear magnification field (from [35]).

the axes towards the camera would not yield any discernible effect, the grid points
are moved along the axes perpendicular to the sheet.

The method has the advantages that it is relatively easy to combine multiple foci
in one distortion, as well as to add shading in order to clarify the magnification fac-
tors (see Figure 3.10). However, although the method uses perspective calculations
to achieve the effect, they result in fisheye-shaped mappings. Also many properties
have to be manually tuned so that no overlap occurs.

3.2.9 Non-linear Optimization

Keahey [35] also developed a technique to find a mapping function for arbitrary
magnification fields by non-linear optimization. Given a magnification factor for
every point in a plane, the algorithm computes the fitting mapping by minimizing
deviations from this magnification. Towards this end, if the magnification deviates
from the desired magnification at a certain point, neighboring points are pushed
away or pulled towards that point. This allows for multiple magnification foci as
well as arbitrary shapes to be magnified.
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Figure 3.12: Hyperbolic tree view (from [39]).

The problem with this method lies in the used measure for magnification. Keahey
uses the area magnification of the mapping, which makes the mapping not really well
defined, since many combinations of magnification factors and anisotropic compres-
sion result in the same area magnification. The exclusive use of area magnification
does not penalize compression of parts of the underlying data at all. The resulting
mappings subsequently exhibit areas of anisotropic compression (see Figure 3.11).

3.2.10 Hyperbolic Tree View

Another relevant technique for the detail in context problem is the Hyperbolic Tree
View [39, 40] (see Figure 3.12), which stresses the importance of keeping visual
information free of anisotropic compression during the magnification of interesting
details. This approach uses non-euclidean information as its basis, as it lays out
tree data in hyperbolic space. It then maps the hyperbolic plane to a disk using
a conformal mapping of hyperbolic space to the Euclidean plane, thereby not in-
troducing anisotropic compression of the rendered shapes. This shifts the problem
of presentation to the problem of finding a suitable layout for the information in
hyperbolic space. It is then also not possible to show this layout on a screen in a
way where all parts of the underlying information are depicted in the same scale.

The method is not directly applicable for Euclidean layouts of information, but is
relevant for the problems in this work for other reasons. Using conformal mappings
is founded in the desire to show configurations of entities in a consistent manner,
which means to leave angles locally constant during change of the focus point. This
makes it possible to find known clusters of entities easier during the interaction.
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3.3 Conclusion
This chapter has shown the manifold of methods for the detail-in-context problem.
These either disconnect details from their context geometrically, are only applicable
for abstract data which is especially laid out in hyperbolic space, or produce map-
pings which are perspective- or fisheye-like in nature. However, when interacting
with complex data like in section 2.1, which has extreme differences in scale, the
latter two mapping approaches introduce anisotropic compression to an extent that
renders the resulting depictions unsatisfactory. For the express intent to render an
image which shows single houses seamlessly connected to the continents they are
built upon, another approach is necessary.

In the next chapter, we will analyze central perspective and fisheye-like mappings,
and introduce the complex logarithm, a conformal mapping from the field of complex
analysis.





Chapter 4

Mathematical Background and
Analysis
The basic work in this research stems from the analysis and application of mappings
for the distortion of two-dimensional data. Such mappings map points in a plane
to other points in a plane. This way, the visual information gets distorted in an
arbitrary fashion.

Although some of the mappings in the previous chapter stem from three-dimensio-
nal intuition, like perspective views of planes, all these mappings depict flat infor-
mation, and can therefore be described with two-dimensional mapping functions.
Furthermore, the previous chapter has shown, that all the known distortion-based
approaches for euclidean information can roughly be classified in two basic tech-
niques, the perspective mappings, and the fisheye-like mappings.

Such two-dimensional mappings change different properties of the depicted in-
formation. These properties and their mathematical treatment are the subject of
the first section of this chapter. In particular, it is shown that both these classes
of mappings anisotropically compress parts of the depicted information. In the sec-
ond section, mappings stemming from complex analysis, the conformal mappings
and in particular the complex logarithm, are treated, since their application for the
detail-in-context-problem is one of the main areas of research in this work.

4.1 Properties
In order to clarify the different properties associated with two-dimensional infor-
mation, we use the example of a regular grid of equally sized circles as content of
the distorted plane. Every circle contains a marker for one distinct direction in the
plane prior to the mapping, for example, a small arrow pointing upwards (Figure
4.1).

These circles can be seen as an example of arbitrary local shapes in the plane.
Following [49], every mapping can locally be described as a linear mapping, meaning
that small circles are mapped to small ellipses. The transformation then can be
locally described as a concatenation of a stretch in an arbitrary direction d1, another
stretch in the direction d2 perpendicular to d1, and a translation and rotation (Figure
4.2).

The depicted shapes have several properties that can be distorted by a mapping:
Primarily, their position is changed by the translation. As a result, other properties
are changed as well, like magnification and local angles. If we look at the infinites-
imal small elements from which that information is pieced together, the properties
that are of special interest to us are size, orientation and the connections to their
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Figure 4.1: To illus-
trate two-dimensional
mappings we use a grid
of equally sized circles
with markers for orien-
tation.

d1

d2

d1

d2

Figure 4.2: A locally linear mapping can be described as
concatenation of a stretch in an arbitrary direction d1, a
stretch in the direction d2 perpendicular to d1, and a trans-
lation and rotation.

neighbors preceding the mappings. The following sections contain a discussion and
mathematical treatment of the different properties changed by two-dimensional map-
pings, the connections and trade-offs between, and ways to calculate them. This will
help in the analysis of existing distortion oriented detail-in-context approaches, and
enable the development of adequate distortions for data with extreme differences in
scale between details and their context.

The commonly known mappings for detail-in-context techniques can be grouped
in two classes of mappings, central perspective and fisheye-like functions. We thus
use these two mappings in their purest form as examples for our analysis of the
problem with anisotropic compression in common approaches.

4.1.1 Translation
Obviously, the primary property which is changed by mapping functions is the lo-
cation of every single piece of data; a two-dimensional mapping is per definition a
function which moves points in the plane to other points in the plane:

R
2 : (x, y) → R

2 : (xt, yt) (4.1)

All the other properties of the data are changed as a result of these translations.

Fisheyes

A typical example for one of the two basic classes of common mapping approaches,
the fisheye functions, is a radially symmetrical fisheye with a root function as dis-
tance mapping. The mapping used by common fisheye techniques can be described
as follows:

Pt = F + (P − F )
|P − F | at(|P − F |) (4.2)
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The distance function at changes the distance of P to the focus point F , but the
relative direction α is kept the same, as can be seen in Figure 4.3. The class of root
functions is widely used as distance functions.

Figure 4.3: A fisheye mapping with the 5-th root function as distance function.
Points are mapped outwards by that function (left). The resulting mapping magni-
fies the center of interest (right).

Using the nth root as an example distance function, the euclidean distance as
metric, and the origin of the plane as focus point, this mapping simplifies to:

(xt, yt) = (x · m, y · m) with m =
n
√

x2 + y2

x2 + y2 (4.3)

The result of such a mapping can be seen in Figure 4.3.

Central Perspective

We illustrate the other class of common mapping functions, the central perspective
mapping of flat information, with the projection of a horizontal plane onto a vertical
viewport. An according setup and the resulting mapping can be seen in Figure 4.4.

Figure 4.4: Central perspective mapping of planar information on a perpendicular
viewing plane. A data plane with our example grid is mapped to a perpendicular
viewing plane using a central perspective mapping (left). The resulting mapping
(right).

Without loss of generality, this projection can be described as follows [20]:
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(xt, yt) = (x · f

y
, h · f

y
) (4.4)

Here, f is the distance of the view point from the view plane, and h is the height
of the view point over the data plane. The resulting mapping can be seen in Figure
4.4.

Note that both these mappings change several other properties of the pieces of
information different than their position implicitly as well, which is the topic of the
following subsections.

4.1.2 Scaling

The scaling of the pieces of information is central for distortion-oriented detail-in-
context techniques; after all, it is their goal to magnify the important parts, while
shrinking the others, in order to use the available space efficiently.

Thinking about the local scale of distorted information is complicated by the fact
that it is not uniquely defined; two-dimensional information can be scaled differently
in different directions. Accordingly, there are different possibilities to characterize
the magnification locally. To calculate a magnification in one variable, the area
magnification can be used. The scaling factors in x and y direction are given by the
partial derivatives of the mapping function.

The resizing of the different parts of the information is also the most critical
property for their recognizability: Firstly, shapes have to have a certain size in
order to be visible at all. If, for example, a shape is mapped to a space smaller than
one pixel on a screen, it will be impossible to recognize it.

The problem with the so-called anisotropic compression is equally severe: If the
stretching operations in different directions are not equally strong, this detrimental
form of distortion is introduced in a mapping. This compression leads to shapes
being crushed, which, for large differences in scaling factors, leads to them being
mapped to almost linear structures that are not recognizable anymore. Another
result of anisotropic compression is, that angles are locally distorted.

It is possible to calculate the largest and the smallest local magnification factors
with a singular value decomposition of the Jacobian matrix, which can be approx-
imated by using the partial derivatives. The local compression factor is the ratio
between these singular values, or the condition number of the matrix. The area
magnification can be calculated as the determinant of the local transformation.

Another important issue is the one of overlap: this problem occurs if the mapping
function is not bijective, that is, if more than one point from the original data space
are mapped to the same point. For continuous functions, this can happen if the
determinant of the Jacobian matrix is negative somewhere, which means that the
information at that point is “flipped”.

Analyzing our two examples for detail-in-context techniques from the previous
subsection, we can now make the following observations:
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Fisheyes

Concerning anisotropic compression, for our example fisheye, the local scaling factors
are smallest in the direction from the focus point outwards, and largest in the
perpendicular directions. Mathematical analysis shows, that for root functions the
anisotropic compression is constant, but proportional to the root factor. This can
be shown as follows:

We look at a point in a distance d from the focus point before the mapping. After
the mapping, the magnification factor at that point in the direction from the center
outwards dc is the derivative of the distance function. For the nth root function this
is [8]:

dc = (d 1
n )′ = 1

n
· d

1
n

−1 (4.5)

Accordingly, the magnification factor perpendicular to that dp is

dp = a(d)
d

= d
1
n

d
= d

1
n

−1 (4.6)

since the whole circle on which the point used to lie is magnified by the remap-
ping of their distances by that ratio. It is now easy to see, that the anisotropic
compression factor c, the ratio between the two different singular values, is constant
for root fisheyes:

c = dp

dc

= n (4.7)

This shows, that with higher roots the compression grows, and limits the appli-
cability of such fisheye distortions for large differences in scale. However, the same
is valid for other distance functions and metrics, since then the anisotropic com-
pression is only reduced in some areas of the distorted space to the extent of other,
additionally compressed areas.

Also, although our example fisheye is free of overlap, such overlap can easily
occur if the distance function is not carefully designed to be continuously rising.

Central Perspective

For the central perspective mapping, the anisotropic compression factor is growing
with increasing distance in the viewing direction of the information from the view
point. As a matter of fact, the anisotropic compression approaches infinity there,
which means that far away information is mapped to a line, namely the horizon.
This can be shown by looking at the central line through the view plane shown in
figure 4.4 on the right.

Along this line, we look at the magnification factors for small pieces of the
depicted plane in vertical and horizontal direction (see Figure 4.5):

dx = d · f

z
(4.8)

dy = d · f · h

z2 (4.9)
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Figure 4.5: Cut along the central line of the perspective setup and according mag-
nification factors for an infinitesimally small circle.

c = dy

dx
= z

h
= f

y
(4.10)

Here, dx and dy are the size of the image of an infinitesimal circle with diameter
d in horizontal and in vertical direction, respectively, and c again is the compression
factor, the ratio between these singular values. Larger values of c in this case mean
that the relative size of the depicted circle in the vertical direction gets smaller. The
compression obviously gets arbitrarily big for large distances from the viewpoint z,
squashing the information which is very distant from the viewpoint into a singular
line, the horizon. The ordinary central perspective is therefore also limited in the
extent of representable size differences.

4.1.3 Rotation
The rotation in the aforementioned local transformation changes the orientation
of the pieces of information. Although this makes it more difficult for a user to
recognize shapes, a rotation itself leaves intact what we perceive as the shape of
objects.

Figure 4.6: Rotation leaves shapes intact, but might make them harder to read,
especially if widely used conventions exist.

Although the shapes are intact, in special cases recognizing them might at first
seem difficult in fields where usually strict conventions exist about the orientation
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of depicted information. One classic example is cartography, where usually maps
are oriented in north-up orientation. This can be seen in Figure 4.6, where most
people have difficulties recognizing Africa in south-up orientation. However, there
are many ways to map our planet to a plane [70]. Some Australians, for example,
promote the use of Australia-centric use south-up world maps.

Analyzing our two examples for detail-in-context techniques from the previous
subsection, we can make the following observations:

The perspective leaves all the pieces of information looking almost in the same
direction, and the small derivations from that are intuitively easy to interpret. This
leaves us, for methods like the perspective wall or space folding, with the impression
that the local orientation remains unchanged. However, perspective is often used
in a way that makes it possible for the user to rotate the camera, for example
when flying over the earths surface in Google Earth. The then radically changed
orientations of shapes seem to pose no problem for the viewer if it is possible for him
to put himself in an egocentric frame of reference. This works well for well known
geographical data on the city-level, and is the display mode used in most navigation
systems.

The fisheye-like mappings also change the local orientation only slightly.

4.1.4 Connectivity
Another property of mapping functions is how they deal with the connections be-
tween different parts of the mapped space: If a mapping maps two infinitesimally
close points to different positions, a cut between these points is introduced. If this
cut separates the details from their context, a user has to mentally reconnect them,
which increases the mental strain. This work shows that cuts that still leave a con-
nection between the currently interesting detail and its context are tolerable. Given
the case that strong magnifications are required, they are preferable to common
approaches, in which parts of the information are compressed to such an extent that
they are no longer recognizable.

Looking at our two examples for detail-in-context mappings, the following be-
comes obvious: while the fisheye-mapping is leaving the connections all intact, the
perspective has a singularity for points with y = 0. In practice, this means it can
only show things in front of the camera, information under and behind it are not
mappable at the same time. Additionally, the finite size of the viewport makes it
necessary to cut off the mapped information at the sides, so that an opening angle
of 180 degrees is not possible.

4.2 Complex Analysis
In the previous section, we have seen two archetypal example mappings which are
widely used for detail-in-context distortion, but introduce anisotropic compression
in that process. Conformal mappings, on the other hand, are those mappings that
stretch the pieces of information equally in all directions. This means that small
circles are mapped to other small circles without causing distortions to local angles
or introducing anisotropic compression.
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Such mappings can be found in the field of complex analysis [25]. This mathe-
matical discipline deals with complex valued functions, which map complex numbers
to other complex numbers. They can therefore be interpreted as two-dimensional
mappings. A basic insight from this analysis is, that all the functions which are an-
alytically representable have special properties, which are useful for our application.

All these so-called analytical functions are complex differentiable, that is, they
possess a derivative which is itself complex valued. This means, that the pieces of
information in the corresponding mapping only get translated, rotated and isotrop-
ically magnified, leaving the shapes locally undistorted.

First and foremost, all the basic functions from ordinary analysis possess complex
counterparts, like root functions, logarithms, exponentials and so forth. Apart from
that, the analytic operations and combinations like addition, interpolation and so
on yield a magnitude of conformal mappings.

The logarithm is a function well known for application to a single axis for plots
that contain numbers with different orders of magnitude. In the following chapters,
we use the complex logarithm as a two-dimensional mapping function for the pur-
pose of showing details that are orders of magnitude smaller than their surroundings
in their context. As we will later see, there exist strong mathematical connections
between the complex logarithm and the fisheye and perspective mappings. Before
elaborating on this in the following chapters, we first introduce the complex loga-
rithm here.

As stated above, we want to use the complex logarithm as a two-dimensional
mapping function. It maps a complex number to another complex number in the
following way:

log z = ln |z| + i arg(z) with − π < arg(z) < π (4.11)

It maps the logarithm of the magnitude of a complex number to the real value and
the numbers angle to the imaginary value. Thus, points on circles around the origin
(with equal distance from the origin) of the complex plane are mapped to parallel,
vertical lines. Rays from the origin on outwards (with equal angle) are mapped to
parallel, horizontal lines (see Figure 4.7). The origin itself is a singularity, mapped
infinitely far away in the negative real direction, and magnified infinitely.

The magnification is indirectly proportional to the distance from the origin be-
fore the mapping. This means that objects close to the center of the plane are
extremely enlarged. Like the one-dimensional logarithm, the complex logarithm
maps distances that differ by a certain factor to equal distances: Thus, points that
have distances from the center with the same order of magnitude are mapped into
equally wide horizontal stripes. Consequently, enlarging the context by orders of
magnitude only means enlarging its image by constant stripes.

Concerning the complex logarithms properties, we can make the following state-
ments: since the mapping is conformal, no anisotropic compression is introduced,
and there is no overlap. This makes recognition of shapes with very different scaling
factors possible. However, the mapping has its drawbacks: First and foremost, the
information is rotated in a, at first, counterintuitive way. The connectivity is also
disrupted on an arbitrary line from the center of interest outwards. However, we



4.3. CONCLUSION 37

180°-180° 90°-90° 0°
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-180° 180°

Figure 4.7: This complex logarithmic mapping maps rays from the center on outward
to vertical lines, and concentric circles to horizontal lines. Note the extreme differ-
ence in distances between the horizontal lines on the right and the evenly spaced
circles on the left.

will later see how building an intuition for the mapping is still possible due to the
similarities to well known mappings.

4.3 Conclusion

(a) (b) (c) (d)

Figure 4.8: Identical mapping (a) of a grid of small squares. Perspective (b) and
fisheye (c) mapping both enlarge parts of the grid, but introduce compression, vis-
ible because circles are mapped to ellipses. The complex logarithmic mapping (d)
enlarges parts of the grid without introducing compression.

All the distortion oriented detail-in-context techniques for the Euclidean plane
in the previous chapter anisotropically compress parts of the information we want to
show. Strong compression leads to shapes being unrecognizable after the transfor-
mation, and is inevitable with the described techniques if there are large differences
in magnification factors between details and their context. The first contribution of
this thesis is to map two-dimensional Euclidean data in a way that avoids compres-
sion while enlarging parts of the information in relation to other parts.

The perfect mapping that keeps all other properties intact while scaling parts of
a plane differently cannot exist. Thus, choosing a mapping function for a certain
problem always has to be a trade-off between the different kinds of distortion it
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introduces. One point made in this work is, that for the exploration of complex data
over several orders of magnitude, keeping shapes uncompressed is more important
than keeping rotations constant and even justifies giving up some of the connections
between points in the plane in the process. Accordingly, we propose to cut the plane
open along a line from the center of interest outward, which allows enlarging the
center by extreme factors without introducing local compression in the mapping.
The complex logarithmic mapping does exactly that.

The following chapters describe applications of that mapping for the interactive
detail-in-context visualization of different data. Besides the implementation issues,
a focus lies on the interaction with such a view, and the question of how to make
users understand the mapping.



Chapter 5

Complex Logarithmic Views for
Vector Data
This chapter describes the first attempt to employ interactive complex logarithmic
views for the interaction with and navigation of abstract visual vector data. The first
major application subject is a highly complex existing layout from a visualization
of complex software systems.

The application demands the answering of several questions, in order to yield
an interactive complex logarithmic view. Firstly, to yield useful interaction, a tran-
sition between the euclidean layout and the complex logarithmic detail-in-context
layout is provided, and dragging points in order to change the center of the view is
used. Secondly, on the implementation side, the rendering of the vector data em-
ploying modern graphics hardware is described. The chapter ends with application
examples, and a description of our experiences with the method.

5.1 Interaction
The goal of this method is to interact with complex data, using complex logarithmic
views for the magnification of a center of interest. To yield useful interaction, we
first describe a transition between the euclidean layout and the complex logarithmic
layout, which uses another class of complex analytic mappings, namely scaled and
shifted complex root functions. We then describe moving through the data.

5.1.1 Transition
A smooth transition between complex-logarithmic and euclidean viewing modes
is helpful in order to provide for seamless switching between magnified and non-
magnified views, and building of an intuition for the former layout. This transition
is derived from the intuition that a complex logarithmic view is similar to a fisheye
view which is cut open and relaxed, and uses conformal mappings, namely root
functions, which converge towards the logarithm.

The archetypal fisheye is described in 4.1. We have illustrated there how en-
larging a center, but keeping everything around it connected, leads to anisotropic
compression, since the distance function stretches concentric circles with constant
radius more in the direction around a focus point then in the direction perpendicular
to the circles. A solution is that we give up the constraint to keep everything con-
nected in only one point on every one of those circles. We can then move everything
along the circles, until the magnification factors in the two directions are equal.
Then the resulting mapping is conformal, and does not compress the information
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or distort angles locally. For a given fisheye with the n-th root function as distance
mapping, as shown in Figure 5.1(a), we can see how a regular grid of squares is
distorted to circular shapes by anisotropic compression. If we move every point Pt

along a circle by leaving it at the same distance from the center F , but dividing
the angle α by a constant, we can observe how the stretched squares start looking
like regular squares again. Once we have moved every point to another point on
the same circle, but with a n-th of the angle α, we have reached conformality, and
right angles remain the same after the mapping. The resulting mapping is the n-th
complex root function, another function treated in the field of complex analysis.

(a) (b) (c) (d)

Figure 5.1: Cutting a fisheye with the 5-th root function as distance function open
by gradually dividing the angle by larger numbers. Once the angles are divided
by 5, the resulting mapping is conformal, small circles are mapped to circles. The
resulting mapping is a complex root function.

The complex root functions map a complex number z to another complex number
in the following way:

n
√

z = n

√
|z| · ei

arg(z)
n with − π < arg(z) < π (5.1)

Like in the fisheye described in 4.1, the n-th real root function is applied to the
magnitude of a two-dimensional position. In addition, the angle is divided by the
root factor n. The middle of the grid is enlarged stronger with growing n. The
division of the angle leads to a cut in the grid, and to shapes that look like a slice
of pie. The square root cuts the angles in half, and thus the grid only occupies
half of the space. The 4th root leads to the grid occupying a quarter of the space,
and so on. For larger n, the grid is mapped to a narrow wedge, and the central
square takes up most of the space because it is magnified that strongly. However,
the part of the mapping that shows its structure in Figure 5.1(d) looks very similar
to the complex logarithm (see Figure 4.7). As a matter of fact, we will now see
that shifted and scaled root functions converge towards the complex logarithm, and
we can therefore use them for a smooth transition between the identical and the
logarithmic mapping.

To yield the transition from the identical mapping to the complex logarithm
using the root functions, we use the series expansion of the exponential function [1]:

ez =
+∞∑
k=0

zk

k! (5.2)

Transforming the base of the n-th root function
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n
√

z = z
1
n = e

1
n

log(z) (5.3)

and applying the series expansion in Equation 5.2, we can express the root as

n
√

z = 1 + 1
n

log(z) + 1
n2

(log(z))2

2! + 1
n3

(log(z))3

3! + . . . (5.4)

If we subtract 1 from both sides, and multiply by n, this yields

n · ( n
√

z − 1) = log(z) + 1
n

(log(z))2

2! + 1
n2

(log(z))3

3! + . . . (5.5)

For n → ∞ everything except the first summand converges to 0, and thus we
yield this connection between the roots and the logarithm:

lim
n→∞ n · ( n

√
z − 1) = log(z) (5.6)

Adding a constant complex value to a complex function shifts everything in the
resulting mapping by that value, and multiplication scales accordingly. We have
therefore shown, that appropriately scaled and shifted root mappings converge to
the complex logarithmic mapping. The resulting transition is depicted in Figure
5.2.

(a) n = 1 (b) n = 1.25 (c) n = 2 (d) n = 5 (e) n = ∞

Figure 5.2: Transition from the identical mapping (left) to the logarithmic mapping
(right) using scaled and shifted complex root functions.

Using the described techniques, it is possible to conformally map two-dimensional
information in a way that enlarges one point in it extremely strong, while shrinking
the others in relation. In order to aid the understanding of the complex logarithmic
mapping, and enable changing between logarithmic and identical mappings fluently,
we employ the root functions as a transition between the two mappings: We let the
user interactively manipulate a parameter 0 ≤ a ≤ 2π, which describes the opening
angle of the wedge on which the information is mapped. An angle of 2π means,
that there is no cut in the mapping, and we use the identical mapping. Between
0 and 2π, we use the complex root functions. The parameter n in Equation 5.1 is
calculated with

n = 2π

a
(5.7)

to yield the desired opening angles. For small values of a, the wedge would grow
very narrow, and only use the upper part of the screen, which, however, is against
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Figure 5.3: Unfolding of a complex graph layout with edges. Note how the blue
node in the middle is enlarged and cut open.

our intentions. Thus, we scale and shift the wedge in the described way. The result
is the transition shown in Figure 5.3. Once we are sufficiently close to a = 0, we
switch to the complex logarithmic view, which is shown in Figure 5.9.

5.1.2 Navigation
For the navigation through the data we allow the user to drag a point of the trans-
formed plane with the mouse to an arbitrary other point. By inverting the actual
transformation, we calculate where the starting point and the end point of the
dragging operation are located in the original, untransformed space. The resulting
points yield a translation vector, which moves the point under the mouse pointer to
the intended new position when applied to the original data. Figure 5.4 shows the
according movement of the untransformed and the transformed space.

This mode of interaction is very intuitive, since it feels like grabbing and moving
objects on the display, similar to Shneidermans Direct Manipulation [67]. Pulling
them towards the origin of the transformation enlarges them, and pulling them away
from the origin makes them smaller. After getting used to this mode of interaction,
it is possible to bring very small details in focus with one dragging operation of the
mouse without releasing the mouse button (see Figure 5.5).

The complex logarithmic view is only able to show a certain range of orders of
magnitude, since the view size is constrained at the top and the bottom. In order
to center the desired range of data, a zooming operation in the original data space
is necessary. The zooming in the untransformed space translates to a simple and
intuitive vertical shift in the transformed view, as can also be seen in Figure 5.4.

5.2 Implementation

Our implementation of the described technique takes geometry consisting of points,
lines and triangles as input data. Arbitrary polygons can be rendered by subdividing
them into triangles.

We can simply re-map point primitives by calculating their new positions. There
are, however, two reasons for dealing with lines and triangles differently: Firstly,
straight lines in the original data are mapped to curves in the transformed space.
This requires to subdivide lines and triangles in order to avoid artifacts. The details,



5.3. APPLICATIONS 43

Figure 5.4: Navigation through the data using zooming and panning operations in
the transformed complex-logarithmic view. Constant movement through the data
(a) is transformed to the movement seen in (b): While data on the vertical corre-
sponding to the direction of the movement moves downwards, information in the
opposite direction moves upwards. Zooming in the euclidean view (c) accords to
constant vertical movement in the complex logarithmic view (d).

which we view very closely, have to be divided into enough sub-primitives so that
after the transformation the discretization of the curves is not too distracting. For
our implementation, we subdivided the geometry empirically, until the artifacts
disappeared. This leads to the use of many unnecessary primitives. However, it
is possible to divide the primitives adaptively by taking their magnification factors
into account, and rendering more triangles where the magnification factor is higher.

Secondly, the mappings we use introduce a cut in the mapped information. It
is thus necessary to separate the vertices of line segments and subdivided triangle
primitives for the rendering if they are intersected by the cut: The vertices of such
primitives are mapped to opposite sides of the cut, and should no longer be connected
in order to prevent artifacts. For line segments, the subdivision is straightforward.
We calculate the intersection point with the cut, and replace the line segment with
two line segments on each side of the cut.

For triangles, there are two different cases in which triangles can be intersected
by the kind of cut resulting from the used mappings: In the first case, the start of
the cut is located inside the triangle, making it necessary to cut open one of the
sides of the triangle, and to replace the triangle with five smaller triangles. In the
second case, the cut intersects two sides, which requires to disconnect the two halves
of the triangle and to replace one half with two smaller triangles. The two different
cases are shown in Figure 5.6.

The intersection tests can be performed very fast with hierarchical boundings for
the primitives, since the cut only intersects a few of them at any given time. After
the primitive division, we employ OpenGL [68] and vertex shaders [19] to transform
the geometry. We reach interactive frame rates on common graphics hardware for
data sets with hundreds of thousands of primitives.

5.3 Applications

In this section we present several example applications for complex logarithmic
views, in order to show that our approach is versatilely usable. Due to the fact that
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Figure 5.5: Traveling from point A to another point B: The user drags B downwards
into the center of interest. At first, node A is intersected by the cut in the mapping,
and divided in two parts. After the first three images, the center of the magnification
has left the green area. Then, after moving through the blue area between A and
B, the center of the magnification enters the area around B in the image next to the
last.

we can render all sorts of geometry consisting of points, lines and triangles with our
approach, the implementation of additional examples is not very time-consuming.

5.3.1 Complex hierarchical graphs

The first application of our proposed method is the exploration of complex graphs
that visualize complex, hierarchically organized software packages [2]. The circles
in the visualization depict the single software classes. They are surrounded by
colored areas of recognizable shapes that visualize the containment within individual
software packages. Edges between the circles represent inheritance relations between
the corresponding classes. The visualization contains many details that are over
a thousand times smaller than the entire context. The large differences between
magnification factors we can show in a single image are apparent in Figure 5.7.
While we need several ordinary images to visualize details in a complex graph, the
complex logarithmic view simultaneously shows objects with sizes ranging over three
orders of magnitude.

The original intention behind our method is to be able to explore single nodes
closely, while still keeping the whole context in sight and reachable at all times. En-
larging the single nodes to a considerable size of the screen allows showing additional
details for these nodes, such as source code or information about variables.

The application evidences the advantages of our approach over existing methods:
The characteristic shapes that show the clustering in our graphs are well recogniz-
able, even if they are far away from the current center of interest, because they are
not compressed. This makes it possible to find known places again very quickly,
even though they might be very small on the screen. Pulling these places into focus
is possible with one simple drag of the mouse.
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Figure 5.6: The two cases of intersection between a cut and a triangle.

In addition, the complex logarithmic mapping yields a very intuitive display for
connections from a node focused in the center of the mapping to other nodes: All
rays emanating from this node are mapped to vertical parallels, and thus separated
from each other. This reduces the clutter between the edges starting at a focused
node that is eminent in an identical mapping of the whole information space or a
common fisheye (see Figure 5.9).

5.3.2 Voronoi Treemaps

Our second application example is to use our method for the enlargement of a cell
of interest in Voronoi Treemaps [3]. This application also shows several notable
properties of the complex logarithmic views. Since the shapes of the single cells and
the borders of the hierarchies in a Voronoi Treemap are approximately circular, they
are mapped to horizontal curves by the complex logarithmic view. This yields the
layered structures shown in Figure 5.8.

5.3.3 Geographical information

A third domain for our method is geographical information. Figure 5.10 shows a
complex logarithmic view of map data of North America centered at the Capitol in
Washington. Well known features of very different sizes like the national mall, the
Potomac, Florida, and the Great Lakes are easily recognizable, since they keep their
shape after the mapping. In addition, the mapping does not change angles at street
intersections, and thus makes it easy to follow known roads. It is also very easy to
answer which places in the view are closer to the center of interest or farther away.

Our fourth example application is geographical statistical information, like the
U.S. census data. This data typically contains a lot of information in populated cen-
ters, which leads to overplotting, if we want to visualize it in the larger geographical
context. Figure 5.11 shows a complex logarithmic view centered at a point in the
central park in Manhattan. It demonstrates that it is possible to show single street
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Figure 5.7: On the left side: Four views with different zoom levels centered around
the same point in a two-dimensional layout of a graph. On the right side: Detail
and context of the same layout within one image, using a complex logarithmic view.

blocks in the context of the whole state of New York, while not changing the shape
of, for example, single counties in the countryside or long island.

5.4 Conclusion

We presented a new distortion oriented method for the detail in context problem
using the complex logarithm as a mapping function. It allows to show tiny details
in very large contexts in one seamless visualization, and is free of the anisotropic
compression introduced in the approaches described in Section 3.2.

Although a formal evaluation was not conducted, we required several persons to
use our interface and browse through the visualizations of complex software systems.
Beforehand, we explained our goals, showed the visualization in the undistorted
view, and explained the controls for the common zooming and panning, and the
transition to the logarithmic view. After a few minutes, most users were able to move
through the logarithmic views and quickly find small details they had previously
seen. The strength of our method seems to lie in this task: A change from one place
to another typically takes only one mouse dragging operation and is accomplished
in about one second, while the same movement from one detail to another with two
zooming operations, first outwards, then inwards again, takes considerably longer,
since it is necessary to re-center the view between the magnification operations. The
difference in speed becomes more significant with more complex data. Some users
reported that it helped to imagine themselves to be at the center of the visualization,
looking in all directions simultaneously, just like in a panoramic image. Then, the
fact that objects become larger once you pull them towards you was reported as
intuitively understandable, as well as the fact that things disappearing from the



5.4. CONCLUSION 47

Figure 5.8: Voronoi Treemap (left) and complex logarithmic view with one cell in
the Voronoi Treemap enlarged (right). The borders of the different hierarchies are
transformed to almost horizontal curves.

view on one side reappear on the other. This hints at a connection to panoramic
images, which is elaborated upon in the next chapter.

The cut in the mapping and the fact that the orientation of the mapped infor-
mation is changed drastically, posed the most important obstacle for the interaction
with complex logarithmic views. However, the degrees of freedom for the cut prop-
erties were not implemented in this first realization of complex logarithmic views.
The placement of the cut is variable, if we not only translate, but also rotate the
information, as will also be shown in the next chapter.

The method is suited for arbitrary two-dimensional information. It is our ex-
perience, that its advantages are especially evident if the information is containing
recognizable, interconnected features throughout all the different orders of magni-
tude. The user has to be familiar with the shapes in the visualization, since the
changes in scale and orientation make it difficult to recognize features that look
similar solely by their relative positions. It is thus important to use the method
with layouts that produce structures that are typical for the represented data items.
Although the focus of this chapter was on abstract data, geographical data usually
has these properties without extra effort. Consequently, the application of complex
logarithmic views for aerial imagery is the subject matter of the next chapter.
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Figure 5.9: The origin of the complex logarithmic mapping is inside the node. It is
cut open and mapped to the bottom of the image. Edges emanating from the node
to other nodes are mapped to parallel lines.
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Figure 5.10: Complex Logarithmic view
(bottom) of map data (top). The view
is centered at the Capitol in Washing-
ton. Points north-west of the capitol are
mapped to a vertical line in the middle of
the image. Points south-east are mapped
to the very left and the very right.

Figure 5.11: Logarithmic mapping (bot-
tom) of census data of the state of New
York (top). The view is centered at the
Central Park in Manhattan. The corners
of the park are still right angles, since an-
gles are locally undistorted.





Chapter 6

Complex Logarithmic Views for
Aerial Imagery
This chapter describes the application of complex logarithmic mappings for the
interactive exploration of highly complex whole-world aerial imagery. This approach
poses several new challenges compared to the complex logarithmic views described
in the previous chapter.

In order to build an intuition for the mapping fitting this subject matter, it is
prudent to view the mapping as a form of perspective, since ordinary central point
perspective is a well established mapping for the browsing of aerial imagery. As we
hinted at earlier, like with the fisheyes, there exists a strong connection between
the two mappings, which is described in the first section of this chapter. Another
challenge is the spherical shape of our planet, which has to be taken into account for
the depiction of the part of the view which shows the large context containing the
continents. Therefore, our method incorporates cartographic knowledge, at which
we look in the following section. The implementation of real-time rendering also also
needs a more sophisticated approach for the huge amounts of pixel data involved.

6.1 From Perspective to Complex Logarithmic
Views

In this section we motivate our approach by showing its mathematical and intuitive
connection to the familiar perspective projection; both map a two-dimensional space,
which the surface of the Earth basically is, in a way that differently scales parts of the
image. Objects close to the midpoint of the complex logarithm, or to the viewpoint of
the perspective projection respectively, are enlarged, while farther parts are depicted
much smaller.

To show the mathematical connection between the ordinary central perspective
view and the complex logarithmic view, we start with the former. The central
perspective maps points by projecting them along straight rays onto a viewing plane,
as illustrated in Chapter 4.1. An example for a perspective view of our subject
matter in this chapter, aerial imagery of the Metropolitan Museum in New York,
can be seen in Figure 6.2(a). As mentioned earlier, a shortcoming of this form of
perspective is, that it only shows parts of the world in the direction in which the
camera is pointed. The information about what is beside and behind the camera is
completely lost.

In contrast, a panoramic perspective uses an unfolded cylinder as viewing plane,
and presents information in all directions around the camera simultaneously. The
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Figure 6.1: Side view of a panoramic perspective projection. Instead of on a view
plane, points in the object plane are projected on a view cylinder with radius f .
Note that then any cut along a plane through the view point and perpendicular to
the object plane looks like Figure 4.5.

(a) Ordinary perspective view (b) Panoramic perspective view

Figure 6.2: Perspective views of the Metropolitan Museum in New York: The in-
formation beside and behind the virtual camera is lost in the ordinary perspective
view, whereas it is preserved in the panoramic perspective view. In both perspec-
tive mappings, the information far away from the viewpoint is compressed into to a
singular line, the horizon.
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result of this form of panoramic perspective view is shown in 6.2(b). Like in the
ordinary perspective view, every vertical still is the image of a line from the viewpoint
outwards, but information in every direction is represented on the cylinder. The
horizontals no longer correspond to lines parallel to the viewing plane, but rather
to circles around the viewpoint.

Although the complete plane is depicted, the panoramic perspective view still
suffers from the second shortcoming of perspective projection, namely the introduc-
tion of anisotropic compression towards the horizon. Analogously to the central
point perspective (see Section 4.1.2), the compression gets arbitrarily big for large
distances from the viewpoint, squashing the information which is very distant from
the viewpoint into a singular line, the horizon.

The connection to our complex logarithmic view is obvious, if we consider it
as a panoramic perspective view, which simply strives to avoid any anisotropic
compression towards the horizon. Figuratively speaking, it is necessary to stretch or
squash every piece of perspectively mapped information just enough to compensate
the compression introduced in the mapping. This means, we have to vertically scale
every piece by the compression factor. This pushes every row in the depiction to a
new position in the image, which we can calculate by integrating the magnification
factors:

ynew(z) =
∫ f

z
dz = f · ln(z) + C

The projection cylinder has a radius of f , which results in a projection width of
2πf . The height of the projection is potentially infinite.

Summarizing, this stretched panoramic perspective view, which compensates
anisotropic compression towards the horizon, maps points in R

2 in a way that the
horizontal position depends on the angle to the viewpoint, and the vertical position
depends on the logarithm of the distance to the viewpoint. Mathematically, this
mapping is the complex logarithm introduced in Section 4.2. The final result of a
complex logarithmic view showing the Metropolitan Museum is shown in Figure 6.7.
The similarities of the lower part, and the differences of the upper part, between
this image and the panoramic perspective are evident.

In that depiction, the upper part of the image shows the whole Earth. For this
result, we have to take its spherical shape into account. The complex logarithm
operates on points in a two-dimensional plane, therefore we need a mapping from
the sphere to the plane. These transformations are offered by cartographic map
projections, which are the subject of the next section.

6.2 Cartography

After having analyzed different map projections, it became apparent to us, that
there exists a strong relationship between complex logarithmic views and the well-
known and widely used Mercator projection. Using this projection in its oblique
form, is in its core a complex logarithmic view. We will therefore firstly illustrate
this relationship, before generalizing to other map projections and their properties.
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6.2.1 Relationship to the Mercator Projection

The Mercator projection [69] maps the Earth’s geographic coordinate system to R
2.

It belongs to the group of cylindrical map projections. Beside the standard Mercator
projection, where the axis of the projection cylinder runs through the poles, there
also exist more general types: First, the transverse type, where the cylinder’s axis
is orthogonal to the axis of the standard type, and second, the oblique type with an
arbitrarily angled axis, while for both types, the axis still passes the Earth’s center.

The standard Mercator projection has the following properties: The scale is true
only along the Equator, but reasonably correct within 15◦ of the Equator. The
areas and shapes of large regions are distorted, whereby the distortion increases
away from the Equator, and is extreme in polar regions. The projection of the poles
itself would require a cylinder of infinite height. Therefore, the cylinder is cut off for
large latitude values. Usually, this latitude threshold is between 70◦ and 85◦ north or
south, depending on the intended application. Mercator projections are conformal
mappings in which angles and shapes within any small area are essentially true, not
introducing anisotropic compression.

In our approach we aim for depicting very small details of the Earth’s surface
within the context of the overall world, while avoiding local distortion in a way that
the shapes of the geographical objects, such as rivers, islands, or continents, remain
recognizable for the user. For the special case of presenting a detail view of the north
or south pole in the context of the overall world, the standard Mercator projection
offers exactly such a mapping. When applying the cut of the projection cylinder at
high latitude values above 85◦, then the poles are extremely magnified at the top
and bottom of the resulting image, and the middle of the image presents the rest
of the world. This characteristic of extreme magnification at top and bottom of
the Mercator projection, which is usually identified as its main drawback, can be
exploited to generate detail-in-context representations of any point on the Earth’s
surface by utilizing oblique Mercator projections.

Given aerial imagery with sufficient resolution, a detail-in-context representation
of a certain point of interest on the Earth’s surface is obtained by using an oblique
Mercator projection, for which the axis of the projection cylinder runs through this
point of interest. To actually generate this representation, the corresponding latitude
and longitude values for each point in an image can be computed by inverting this
oblique Mercator projection. Then these resulting latitude and longitude values are
used to look up the information in the imagery at an appropriate level of detail by
applying the map projection used for the imagery.

To now generalize our method, it is important to understand that the essence of
the Mercator projection is a logarithmic transformation. To be more precise, it is
a concatenation of the Stereographic map projection and a complex logarithm [52].
Using other cartographic projections for the intermediate step of flattening the earth
leads to different detail-in-context mappings. In the next subsection, we discuss map
projections that are useful for our representations.
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6.2.2 Azimuthal Map Projections
While in general arbitrary map projections could be used, we considered the class
of azimuthal map projections [69], which are using a plane as projection surface, as
especially applicable. The property qualifying them for complex logarithmic views
is that they present true directions, but not necessarily true distances, from a chosen
center point to any other point. The projections of points with equal direction yield
vertical lines in the complex logarithmic view, whereas points of equal distance yield
horizontal lines.

Below we discuss the results of complex logarithmic views for the following az-
imuthal map projections: The aforementioned Stereographic, the Azimuthal Equidis-
tant, and the Orthographic projection.

The Stereographic projection is a true perspective, with its point of projection
being located on the surface of the sphere, opposite the point of tangency of the
projection plane. It is the only true perspective or azimuthal projection that is
conformal. The concatenation of the Stereographic projection and the complex
logarithm is therefore a conformal mapping itself, and equivalent to the Mercator
projection. Due to this relation, the resulting representation needs a potentially
infinite space at the top. Since we just want to enlarge the point in the center of
interest, we simply cut off the representation close to the other pole, similar to the
Mercator projection. While this may lead to parts of the landmasses being cut off,
in practice this case is seldom, since the majority of the center of interests antipodes
are located in water covered areas of the planet.

The Azimuthal Equidistant projection is not a true perspective, nor is it confor-
mal. It is constructed by plotting a given point, with a given angle to the center
point, at a distance from that center proportional to its distance on the sphere. This
projection is relevant in practice because its complex logarithmic view presents the
whole world without a necessary cut at the top. Rather, the point opposite to the
center of interest is mapped to a line at the top.

The Orthographic projection is a true perspective that uses a point of projection
at infinite distance. It is not conformal either. In contrast to the other two projec-
tions, it does not represent the whole Earth in one image, but rather just the half
that is visible from the point of projection. Hence, complex logarithmic views using
the Orthographic projection reintroduce the concept of a horizon. In this respect,
it is a combination of the familiar appearance of the Earth as a globe, and our
detail-in-context approach.

Figure 6.3 shows an overview of these three map projections and the resulting
complex logarithmic views.

6.3 Implementation

Here we show how to adapt complex logarithmic views for the realtime exploration of
the Earth’s surface. For our prototypical implementation, we used multi-resolution
tiled imagery from Microsoft’s Virtual Earth, which we downloaded and cached from
the Internet in realtime. The available satellite and aerial imagery is enormously
complex, down from continents to single houses, which poses different problems for
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(a) Stereographic (b) Equidistant (c) Orthographic

Figure 6.3: Complex logarithmic views (bottom) of azimuthal map projections (top,
middle). The stereographic mapping is transformed to an oblique Mercator projec-
tion with the center of interest as one of the poles. It thus necessitates cutting off
the second pole on top of the representation. Contrarily, the Equidistant projection
is mapped to finite space, while still showing the whole Earth. The Orthographic
projection only shows half of the world, introducing a virtual horizon.
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the organization and rendering of this massive amount of data. Due to the similarity
of our mappings to perspective projections and terrain rendering, we can apply ideas
from the research on large texture rendering to our problem. Hence, we adapted the
frequently used clipmapping technique [75, 65] to our approach.

The purpose of clipmapping is to render perspective views of geometry with very
large textures. This is necessary, because using an ordinary mipmap is not feasible
due to memory constraints. The clipmapping method benefits from the fact that, in
perspective views, not the whole mipmap is needed with an equally high resolution
at the same time. Rather, it is sufficient to use only a small subset of the data at
any given moment. Depending on the viewpoint, the resolution of the necessary
images decreases with increasing distance from that viewpoint. This means, that
only nearby objects require high resolution texturing, while objects far away from
the viewpoint are rendered with low resolution textures. Consequently, a clipmap is
an updatable representation of a partial mipmap, in which each level of the imagery
has been clipped to a specific maximum size. This results in an obelisk shape for
the stack of images as opposed to the pyramid shape of mipmaps. While moving
through the rendition, it is then only necessary to ensure that always the appropriate
section of the mipmap for the current viewpoint is represented in the clipmap stack.

We extended the clipmapping technique with regard to our application: We
took into account, that the data is sampled in tiles of a certain size, and that it
does not cover the complete Earth, for each of the detail levels—for example, the
resolution of the data for large cities is usually higher than for rural areas or the
ocean, especially. Therefore, we introduced an additional index structure to enable
a more flexible arrangement of and access to the image tiles, reducing memory
consumption. Additionally, our implementation is realized by only using OpenGL,
without the need of special hardware with clipmapping support.

Our rendering system consists of two different parts: The first part is responsi-
ble for loading and caching the required image tiles in the memory of the graphics
hardware, and managing the index structure to allow the fast and consistent access
to the clipmap stack. The second part performs the actual rendering by employing
a fragment shader program, which allows for using arbitrary mappings without any
geometry operations. The fragment shader calculates for each pixel the correspond-
ing detail level in the imagery by inverting the current mapping, and then computes
the pixel’s color value by texture interpolation within the determined level. These
two parts can be run concurrently, as long as a consistent state of the index structure
is guaranteed while the actual rendering is performed.

6.3.1 Data Organization

Satellite and aerial imagery exists for different detail levels, where each of these
levels is stored as a potentially incomplete set of small tiles. Like in clipmapping,
for rendering a complex logarithmic view for a specific center of interest, we need
only a small fraction of these tiles: Tiles with high resolution near the center of
interest, and tiles with low resolution for parts that are far away. Therefore, we
only need roughly the same small number of tiles for every detail level. Figure 6.4
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Figure 6.4: Zones of tiles with different size and resolution around the center of
interest in the orthographic (left) and complex logarithmic view (right)—greener
means higher resolution. In the transformed view, the concentric zones are mapped
to horizontal stripes with almost equal size.

shows a typical footprint of image tiles from different levels necessary for a certain
viewpoint by an orthographic and a complex logarithmic view.

As an extension of the clipmapping approach, in order to allow a more flex-
ible organization of the detail levels, we realized the clipmap stack using a three-
dimensional index structure, as illustrated in Figure 6.5. Each two-dimensional layer
in that structure contains a detail level, whereby the layers are sorted vertically from
low resolution at the top to high resolution at the bottom. Each layer itself contains
references to image tiles that are linearly organized in the memory of the graphics
hardware. The neighborship of the references in one layer is identical to the orig-
inal neighborship of the image tiles in the dataset. If an entry of a layer does not
possess a valid image tile, then it refers to the corresponding entry in a higher layer
that possesses a valid image tile. This enables quick access to the data with the
best available resolution in the pixel shader, in case the optimal resolution is not
available for a geographic location.

When the center of interest is moved, we update the references in the three-
dimensional index structure, and load only these image tiles that are not yet existent
in the graphics memory. The loading is performed in the order of tile importance,
loading upper levels, which are offering the context information, first.

The actual size of the index structure, and thereby the number of image tiles
needed in memory, depends on the number of detail levels, the size of the image tiles
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clipmap stack detail levels image tiles

...

...

Figure 6.5: We use a clipmap with an index structure (left) to organize the imagery
in the graphics hardware. The index structure contains one layer (middle) for each
detail level in the clipmap. These layers contain references to the image tiles, which
are arbitrarily arranged in the memory (right).

in each detail level, and the size of the resulting representation. For our representa-
tions we used datasets with up to 25 detail levels and up to 256 tiles per layer, with
a size of 256x256 pixels per tile. Usually, the graphics memory offers more space
than needed for storing the entire clipmap stack. Our technique allows to cache
image tiles that have already been needed, or are presumably needed in the future,
outside of the scope of the index structure.

The advantages of our approach, which realizes clipmapping via an index struc-
ture, is the more flexible updating and caching of the individual tiles, as well as the
reduced memory consumption for the entire clipmap stack. The latter one is due
to the fact that missing tiles, and tiles that are not in the detail levels, still occupy
memory within the originally clipmap levels, while with our technique they do not.

6.3.2 Rendering

After having organized our data with the aforementioned extended clipmapping ap-
proach, we can actually render our complex logarithmic views. To achieve maximum
flexibility, we implement the rendering algorithm for the programmable fragment
shader [19] on the graphics hardware. This allows us to use a variety of mappings
without considering any complicated geometry operations, like mesh deformation
and refinement or the implementation of cuts. We only draw one large rectangle
that covers the entire window, and use the fragment shader to calculate the image by
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inverting the intended mapping, determining the optimal detail level, and sampling
the corresponding image tiles for each pixel.

The detailed algorithm for computing the color value of a pixel is as follows:

1. We determine the location of the pixel as coordinates in our imagery of the
Earth. For this step, we invert the concatenated mappings as shown in Figure
6.6: After normalizing the screen coordinates, we apply the inverse of the
complex logarithm, the complex exponential function:

ez = ex+iy = excos(y) + iexsin(y)

We then apply the inverted azimuthal mapping function, to yield the latitude
and longitude values. Lastly, we apply the mapping function of the image
data, which is, for the tiles we used, the standard Mercator projection.

2. We determine the detail level of the imagery that has the appropriate resolu-
tion by calculating the magnification factors between the original data and the
pixel on the screen. This can be done analytically by differentiating the map-
pings from the beginning to the end. For example, for the complex exponential
function, the derivative is again the exponential function. This derivative is
complex, and contains the magnification factor in the magnitude of the result-
ing number.

3. We determine the tile for the sampling of the pixel by using the coordinates
from Step 1, which describe the location of our pixel in the imagery, and the
detail level from Step 2. If the tile is not loaded, we use the lower resolution
tile the index structure points to.

4. We sample the pixel by using the normalized coordinates from Step 1 for the
image tile from Step 3.

To prevent aliasing artifacts, we implemented trilinear interpolation by determin-
ing the two detail levels that are directly above and below the optimal resolution in
Step 2.

6.4 Results and Interaction
As a result, in Figure 6.7 we present a complex logarithmic view of the Metropolitan
Museum in New York. It extremely enlarges the Museum while the context of
the whole Earth is preserved. Objects that are in the same direction from the
center of interest are mapped to vertical lines, resembling the panoramic perspective.
Objects with the same distance to the center are mapped to horizontal lines. The
scale of the image varies exponentially from bottom to top. Despite the extremely
different scales, small pieces of the world are left nearly undistorted, keeping their
familiar shape, ranging from nearby houses, over regional objects like rivers, to
coastal features, and even continents.

Due to the facts, that our representations present a view of the whole world, and
modern graphics hardware allows for rendering the images at high resolutions in
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Figure 6.6: Our complex logarithmic views are a concatenation of an azimuthal map
projection with a complex logarithm. To sample the pixels of the complex logarith-
mic view, we have to invert the complex logarithm and the azimuthal projection,
and apply the projection of the imagery.

realtime, we can use the representations to intuitively explore and navigate on the
Earth’s surface. Like in Chapter 5, by dragging a point in the image with the mouse
to the bottom, we can fluently move to any object. Since input devices only possess
finite accuracy, it requires more than one mouse click, of course. But by adjusting
the target while moving it closer to the bottom, we are able to correct inaccuracies
during the interaction. Other than in the previous chapter, where the rotation of the
complex logarithmic view was constant, here zooming and rotating in the original
world coordinate system are changed to a one-dimensional translation in the complex
logarithmic views: zooming translates the view vertically, while rotating translates
it horizontally. The latter equivalence is shown in Figure 6.8.

In 6.9 we show a series of stills from an interaction operation. Starting from a
point in the Mediterranean next to Crete, a user navigates towards the Metropolitan
Museum in New York. Since New York is located in North America, the user pulls
this continent, which is clearly visible in the upper part of the first frame, downwards.
As a result, the virtual camera follows a great circle towards the chosen target. In
the second frame, after pulling North America only a few pixels closer, the camera is
already close to the French Atlantic coast. In the fourth frame, the user gets close to
North America and is able to locate the characteristic shape of Long Island. Flying
over Long Island, Manhattan becomes visible in the seventh frame. After locating
Central Park in the ninth frame, the user reaches the goal in the tenth frame.

6.5 Conclusion

We presented the adaption of complex logarithmic views for very complex satellite
and aerial imagery. In addition to an intuitive connection to perspective mappings,
and the consideration of cartographic knowledge, we described an extended clipmap-
ping approach for the realtime rendering of such representations. This enables the
use of our method for the interactive exploration of the Earth’s surface from its
smallest details to the whole planet.
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Figure 6.7: Complex logarithmic view of the Metropolitan Museum in New York,
in the context of the whole Earth. Up to the middle, the image is covered by the
American continent, and the upper part shows the other continents.
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Figure 6.8: In addition to the interaction modes in Figure 5.4 in Chapter 5, the
use of fragment shaders allowed for the easy implementation of rotation: rotating
the data in the euclidean view (a) accords to constant horizontal movement in the
complex logarithmic view (b).

Figure 6.9: An example of an interaction sequence, moving from Crete to New York,
by dragging it downwards. The starting point is marked green, the end point red.
A detailed description is given in 6.4.
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During informal experiments with the interactive visualization, we made a couple
of interesting experiences: After the users have familiarized themselves with our
representations, within a couple of minutes most of them were able to understand
and navigate within the complex logarithmic views. One limitation of our approach
is that it does not utilize conventional map orientation, with North towards the top
of the map. Since many users seem to strongly depend on these directional relations,
some of them tended to get lost in our visualizations. Others were able to interact
effectively, once they understood the similarities to a perspective projection. The
fast movement in the bottom part of the visualization during interaction was seldom
reported as a problem, since the users’ attention was focused on the mouse pointer.

The cut in the mapping posed less of an obstacle for successful navigation, since
the additional degree of freedom of rotation made it easily possible to place it in
the less important areas of the depiction. However, making the cut completely dis-
appear would of course be preferable, but is mathematical impossible for complex
logarithmic views in the plane. However, in the next chapter, we describe an appli-
cation of complex logarithmic perspective in an interactive panoramic cinema which
was able to display aerial imagery without that cut.



Chapter 7

Artistic Research Project
“Globorama”
This chapter describes the artistic research project "Globorama", which stems from
the collaboration between three groups; the Institute for Visual Media at the Center
for Art and Media (ZKM) in Karlsruhe, the Computer Graphics and Media Design
Group at the University of Konstanz, and the Human-Computer Interaction Group
at the University of Konstanz. The project made it possible for the broad masses
to explore the surface of our planet in a never before seen immersive way. Towards
this end, we adapted the previously described technique for the display of satellite
and aerial imagery through hugely different scales for a novel immersive display, an
interactive panoramic cinema. The interaction with the resulting installation was
made possible by use of advanced laserpointer interaction.

The physical manifestation of this concept described in this work was made
possible, since researchers at the ZKM developed an interactive panoramic display
for artistic purposes. This display has a very high resolution through use of six
video-projectors, and is able to render distorted aerial imagery in realtime employing
a computer with three modern graphics boards. Because of the above mentioned
panorama-like properties of complex logarithmic views, it seemed natural to connect
that perspective with this exciting new display. This way, one of the shortcomings of
complex logarithmic views on ordinary flat screens, namely that the world is cut open
along an imaginary line behind the viewer, ceases to exist. The resulting experience
while moving through the world in the panoramic display is very immersive and
intuitively graspable.

To make interaction and navigation with the installation possible, we use modern
laserpointer-interaction developed by the Human-Computer Interaction Group at
the University of Konstanz [38]. We use a specifically developed laserpointer module
and computer-vision algorithms adapted to the panoramic screen in order to move
through the world, and to navigate all the different scales. Our experiences have
shown, that this mode of interaction needs little or no explanation, and is very
helpful for the, mostly very brief, activation of people in exhibitions.

This chapter serves to describe the adaptions made for the interactive display of
aerial imagery in a panoramic display, the additions to the basic display algorithms
for the installation, and the user experience.

7.1 Installation
The physical installation consists of a large interactive panoramic display, and an
additional laserpointer interaction device.
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Figure 7.1: The custom laser pointer interaction device (from [38]).

Figure 7.2: The panoramic display developed at the ZKM in Karlsruhe. Six projec-
tors display a seamless image with 8192 pixels width. Outside view of the panoramic
display (left). Inside view of the display hosting Globorama (right). The center of
this visualization is the city of Karlsruhe (images: Bernd Lintermann, ZKM).

The panoramic display was developed at the Center for Art and Media (ZKM)
in Karlsruhe for artistic installations. It frontally projects a panoramic image on
a screen with ten meters diameter and a height of three meters, using six video
projectors. These projectors’ images are calibrated and distorted in a way that
the installation yields one seamless virtual projection screen with a resolution of
8192x928 pixels. The installation is driven by one display server containing three
graphics cards. Customized software, the so-called Panorama-Player, enables the
transparent development of OpenGL-accelerated applications.

The interaction device of the installation, which was developed by the Human-
Computer Interaction Group in Konstanz, employed a customized laserpointer with
additional accelerometers and tactile feedback, and used specially adapted computer
vision algorithms [37]. The resulting device enables easily understandable pointing
operations, and possesses several buttons for the steering through the visualization.

The installation was amended with a directional sound system, which played
aural background that was tailored in real time to the visualization.

7.2 Interaction

Adapting the complex logarithmic perspective to the panoramic screen consisted of
two parts; the adaption of the display algorithm is detailed in the next section. The
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Figure 7.3: Changing the level of magnification in Globorama. Zooming in and
out of the visualization is akin to selecting a different height for the stripe to be
displayed (images: Bernd Lintermann, ZKM).

interaction in the panoramic display environment also had to be adapted compared
with the interaction employing an ordinary computer workstation with a mouse.

Due to the very wide aspect ratio, not all the orders of magnitude fit on the
screen at the same time. Since zooming in the panoramic screen equates a vertical
shift (see Section 5.1.2), we chose to display only a horizontal stripe of the context
around the current viewpoint, and to enable a viewer to change the zoom factor
interactively. This movement in the panoramic display (see Figures 7.3 and 7.4 left)
feels very much like rising or falling, the comparison to flying up- and downwards in
a hot air balloon describes the experience very aptly.

Moving through the environment, i.e. changing the viewpoint, is also very in-
teresting: Since things on the one side of the screen move downwards, or towards
the viewer, while they move upwards, or away from the user on the other side (see
Figure 7.4 right), it feels like the landscape tilts during movement. The similarities
to the ordinary perspective here help a lot to grasp the ongoings during interaction.

We chose not to implement a facility for rotating of the visualization, since a
user can very easily rotate himself, turn around in the display.

To make the interaction easy and intuitively graspable, we chose the following
interaction method: The first button on the laserpointer device had the function
of “I want to go there”. Pressing this button shifted the center of interest towards
the chosen point. In order to be able to fluently change the magnification of the
visualization with the same button, the magnification was simultaneously changed if
the chosen point lied close to the upper or the lower margin of the screen. Choosing
a point in one of these two zones therefore magnified a new center of interest auto-
matically if it threatened to get too close to the viewer to be seen, or demagnified
it respectively. This yielded a very easy point and click navigation, which needed
little explanation.
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Figure 7.4: Views from the bottom upwards into the panoramic cinema: Zooming
in Globorama (left). Movement through the visualization (right). Zooming raises or
lowers the content of the screen uniformly, whereas changing the center of interest
magnifies parts of the surroundings on one side of the screen while the opposite
parts shrink.

The second button served as a way to quickly change the center of interest to
several predefined points on the globe by superimposing a world map as a menu.
The third button helped people who got completely lost by returning them to a
predefined home, for example the current real world position of the installation in
a level of magnification that made quick recognition and reorientation possible.

The visualization was further enriched by several data in addition to the aerial
imagery. Textual labels were superimposed from a geographic database of geocoded
names. On several locations, georeferenced panoramic photos could be activated by
selecting specific markers. Then, these photos were displayed on the screen until
another button was pressed. Hovering over the markers gave users tactile feedback
by vibration of the laserpointer device. Similarly, it was possible to choose realtime
webcam feeds from all over the world.

7.3 Adaption of display algorithm

The display algorithms had to be improved sufficiently for the extremely high resolu-
tion. The display algorithms for distorted imagery described in the previous chapter
proved flexible and fast enough to work for the high resolutions required in this in-
stallation, since they are based on fragment shaders, and therefore can fully employ
the three graphics cards in the installation. Several optimizations were possible due
to the fact that only a relatively narrow stripe of the complex logarithmic view was
displayed at any given time, and that the change in magnification always took place
relatively slowly.
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The caching algorithms were adapted on several levels in order to speed up data
throughput. The required data was fetched from the internet and saved on harddisk
on a separate computer, which was connected to the display computer by local area
network. After extended use by thousands of visitors, it showed that relatively
few requests for new data were necessary, since most of the interesting points were
visited previously. The flexible index structure described in Section 6.3.1 made it
possible to load only data from the required orders of magnitude, which allowed for
an efficient use of the memory available on the graphics cards.

The use of six video projectors was made possible by one display server with
three high-end NVidia graphics cards. These cards posses many parallel Fragment
Shader units and a lot of memory, and each of them is able to drive two projectors.
Since all the distortion functionality is encapsulated in the most local of units, the
fragments, parallelization was no issue, and the installation was able to derive the
full speed-up that was to be expected by adding more graphics boards. Therefore,
although the overall resolution was 8192x928 pixels, every graphics card only had
to distort the imagery for a little more than a third of this number of pixels.

The installation showed that very extreme distortions like the complex logarith-
mic views are feasible for high resolutions using modern graphics hardware. The
visualization with additional textual and label display was fast enough to run with
60hz for extended periods of time.

7.4 User experience
The experience of exhibiting an installation which employs complex logarithmic
perspective made it possible to evaluate how inexperienced users cope with the
concept. Globorama was shown to several thousand people during four weeks at
the Panorama Festival at the ZKM, and to hundreds of thousands of viewers at the
Thyssen-Krupp science park. It was generally well received.

Watching the users, it became clear that not everybody immediately coped with
the concept. Most of the people, however, where able to understand the map-
ping, and used the installation to explore places well known to them without any
instructions other than regarding the function of the different buttons. This was
possible thanks to the very intuitive interaction device as well as because the map-
ping depicted local shapes of our world in the same way that mapping applications
like Google Earth do. There were several interesting comments from users, which
showed, that the employed perspective was graspable if they realized, that they had
to imagine to stand at a point on the surface of the Earth and to look in different
directions. For example, several users intuitively used term like “behind” or “in
front of” very naturally, like in “you see, there behind the alps you can see Italy,
which is shaped like a boot”, or “look, there is our hotel, right in front of the beach”.

Within the framework of an evaluation of the laserpointer interaction device,
the Human-Computer Interaction Group at the University of Konstanz handed out
questionnaires, amongst others asking the visitors about their experiences with the
employed complex logarithmic perspective. Although that mode of evaluation has
a more informal character and does not make definite statements, the retrieved
73 questionnaires seem to suggest that a majority of visitors enjoyed the different
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worldview, and were able to intuitively understand the mapping concept and to
reach their navigational goals.

7.5 Conclusion
This chapter described the adaption of the complex logarithmic views for an interac-
tive artistic and research installation in an panoramic display. It thereby offered the
opportunity to show this perspective of our world to a broad public, and is evidence
that the display algorithms are robust and fast enough even for high resolutions.

The reactions of the public to the installation were a real enrichment for the
research in this work, and the cooperation with the Centrum for Art and Media
in Karlsruhe and the Human-Computer Interaction Group in Konstanz was a great
experience.



Chapter 8

Map Warping for the Annotation
of Metro Maps
This chapter describes the application of mapping techniques for a specific problem:
to aid in the navigation of metropolitan transportation systems by interactively
linking schematic metro maps with geographic data. The work described in this
chapter is the result of a collaboration with the Research Project “Visual Navigation”
and the Algorithmics Group at the University of Konstanz, who came up with the
basic idea, and approached the author of this thesis with the, from a mapping and
computer graphics standpoint, interesting problem.

While the mapping solution yields results which are very different from complex
logarithmic views, there are similarities: due to the visualized geographic data,
both mapping techniques need to fulfill similar constraints. The mapping has to
be as conformal as possible and free of overlap, in order to enable recognition of
geographical features. The technique also automatically results in a form of detail-in-
context visualization, since vastly different scales are implied by schematized metro
maps.

After the basic problem definition, our technique for warping geographic infor-
mation in order to fit a schematic map with as little anisotropic compression as
possible is described in this chapter. The remainder of the chapter describes the
resulting interactive technique.

8.1 Motivation

The mapping problem described in this chapter arises from the existence of two
different types of maps that serve as navigational aids in metropolitan areas. While
maps of public transportation systems are designed to effectively and efficiently con-
vey possible itineraries, street-level maps usually serve to convey relative positions
and distances of a wealth of locations. These very different purposes have led to
likewise differences in the design of such maps.

8.1.1 Street Level Maps

One goal of detailed street maps is to minimize distortion, which means showing
the real world in a way which is geometrically similar to what we would see from
a vantage point high above a city. Accordingly, street intersections have the same
angles like in reality, and features like parks and rivers have the same distinct shapes
they have in the real world. This makes it easy to mentally put ourselves on the
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map and to autonomously navigate through the city, since we can use the shapes to
find out where we are.

The street-level maps contain a lot more information than only the network of
streets, such as landmarks, public facilities and many other aspects of the surround-
ing environment. By representing geographical information in addition with this
very high level of detail the street-level maps show a large variety of relations be-
tween locations. This abundance of detail is necessary, since a city map is used
for many different tasks, most of which require navigational decisions on a much
smaller scale than the decisions that have to be made while traveling in a public
transportation network.

8.1.2 Metro Maps

Schematic transportation maps are designed to clearly show the navigational in-
formation of the transportation system on a preferably small map. The pioneer of
schematic public transportation maps, Harry Beck, conceived his well-known Tube
Map of London – which is considered a design landmark and forms the basis for
schematic public transportation maps today – in 1931 [21]. To achieve an expedi-
ent representation of the underground map he found it was necessary to make the
central area appear larger, since the stations were closely crowded there. Drawing
a map of the whole area in a limited space mapped the stations in the center too
close to each other to leave space to make their connections distinguishable. Beck
imagined he was using a convex lens to ensure readability in the center and in the
periphery at the same time. He formulated the general design principle for metro
maps to place all the stations at equal distances, although their geographical dis-
tances are very different. This also reflects the fact that the traveling time of a metro
is approximately independent from the distance of the stations in the real world,
since it takes a train a relatively long time to drop off and pick up passengers, and
to accelerate and decelerate.

Another typical schematization requirement for metro maps is straightening the
route lines by placing the stations of a line on straight lines, if possible. The overall
shape is further simplified by restricting the positions of the stations to be only
at a few discrete angles relative to each other, which, for example, leads to route
lines only being mapped to verticals, horizontals or diagonals. This makes it easy
to mentally connect stations belonging to the same line.

The resulting metro maps avoid intersections with small angles, and are generally
easily and intuitively readable. The automatic layout of metro maps has recently
grown into an active field of research [27, 51, 74, 81]. However, most of the metro
maps in use are still manually fabricated by designers, who tweak the maps until
they look just right, and do not always strictly adhere to the aforementioned design
principles. We use manually fabricated layouts as input for our method. One argu-
ment for the use of existing manually fabricated layouts is that the inhabitants of a
city are already familiar with them. We assume that over time people have adapted
their mental map of the whole city to these layouts. Subsequently adapting to a
different layout imposes mental strain on them. Nevertheless, our method works
with automatically generated metro maps as well.
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For finding a way from one station to another station within a public transporta-
tion system the user only requires an overview of the relations between the stations
concerning connectivity. Therefore, the type of relations represented in a schematic
map of a transportation system is very different from that of a street-level map; the
easy perception of the existence of services and connections takes precedence over
geographic accuracy. Spatial relations are preserved on an ordinal scale, if at all.

8.1.3 Combined maps

Many city guides contain street-level maps that are annotated with the stations
and lines of the local transportation system. These annotated geographic maps
are suitable for many purposes, but since all advantages of schematization are lost,
metropolitan areas around the world rely on schematized maps of their transporta-
tion systems.

One approach for combining schematic transportation maps with street level
information are spider maps [60, 77], which are transfer guides for metropolitan
areas. A Spider Map is a schematic transportation map that centers on one station
and displays the local area surrounding the station as a geographic street map, aiding
the user when changing bus and metro lines. However, this makes it necessary to
adjust the schematic layout for providing display space for the station of interest
and its surrounding streets. Additionally, starting at an arbitrary point in the city
and having to chose one of the nearby stations to walk to, a street network map
centered at this specific starting point is more useful than a street map centered at
one station.

To alleviate the above mentioned disadvantages, we propose to annotate schematic
maps with all the information usually incorporated into city maps without modi-
fying their design. Thus, in a way, our approach is opposite to the annotation of
geographic maps.

Designers sometimes include real world items such as coast lines of the sea or
large rivers, but apart from that, most of the features of the real world are not shown,
partly because their placement in the schematic map is not trivial. Due to the lack
of distance relations in the schematic map the expedient positioning of street-level
details requires an extrapolation of the deformations caused by the schematization.
Today, many schematized metro maps contain no detailed information other than
the stations and their connections, but rather restrict themselves to describing the
navigational space of using the transportation system as well as possible. Evidently,
such maps are strongly specialized, since there is no reliable possibility of reading
out any geographical accurate information about the transportation system or its
surroundings.

To analyze these changes in map layouts, Jenny [29] used MapAnalyst, a tool
originally developed for the visualization of geographical errors in historical maps.
He annotates the schematic map with visual hints to aid the understanding of the
implied distortion. Applying this to the London tube map, Jenny observes the typ-
ical features of schematic transportation map layouts. For example, in his scale
isoline visualization, the fisheye character of that map is clearly noticeable. Klip-
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pel and Kulik [36] introduce another approach to visualize the distortion due to
schematization by applying it to the commonly known grid squares of a city plan.

The essential feature a street level map and a schematic metro map have in com-
mon is that they contain position indicators for station locations. Since schematic
maps are designed to preserve relative positions of stations, it seems natural to use
them for aligning the street-level map with the schematic map.

It is important to note that our approach is not about morphing one map into
another, but about a smooth transition between two very different visual navigation
aids, one accurately representing distances and local details and one simplifying
the use of a transportation system by abstracting from irrelevant details. This
distinction becomes evident when comparing with an example used by Reilly and
Inkpen [55, 56], where a slider controls the morphing between a street-level map and
a London tube map. Coupled with alpha-blending, map morphing is used to make
correspondences obvious. Facilitating an intuitive understanding of correspondences
is a prerequisite in our approach, just like the avoidance of fold-overs and occlusions.
The integration of high-resolution, detailed street-level information and high-level,
schematized network diagrams, however, cannot be accomplished in this way, but
requires combination with the appropriate level-of-detail and zooming techniques.

8.2 Warping

In order to merge the two maps, we use mappings from the field of image warp-
ing. Ruprecht et al. [58, 59] describe different methods used for the distortion of
two-dimensional information. All these methods solve the basic problem of warping:
Given two-dimensional information and a set of control points in this information,
the goal is a mapping function moving these control points from their starting posi-
tions to arbitrary end positions. The mapping function should have several proper-
ties for a satisfactory warping: It is supposed to be interpolating, which means that
the starting positions of the control points are precisely mapped to their end posi-
tions. Furthermore, the mapping should be smooth, that is, it should not introduce
discontinuities between the control points. Ideally, the mapping should also be free
of overlap. In contrast to the above mentioned distortion analysis and visualiza-
tion by MapAnalyst [29], for warping geographic information to support navigation
tasks, it is very important to avoid overlap, since otherwise parts of the information
completely disappear.

For the automatic integration of two corresponding maps, each one optimized for
adequately displaying its respective navigational information, triangulation-based
methods are inapplicable, because they suffer from foldover and other discontinuities,
which are not easily solved. Therefore, we chose a warping method using scattered
data interpolation that produces smooth and interpolating mapping functions. In
addition, we want to keep angles in the distorted map as similar to the angles in the
real world as possible, since this keeps the shapes of real world features recognizable.
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8.2.1 MLS
Schaefer et al. [62] describe a moving least squares algorithm that interpolates a
similarity transformation between the control points. This way, angles are less
distorted compared with only interpolating with general affine transformations.

Given a set of control points p, their position after the warping q, and an arbitrary
single point v, Schaefer et al. solve for the optimal affine transformation lv that
minimizes

∑
i

wi|lv(pi) − qi|2. (8.1)

The method is called a Moving Least Squares minimization, because the weights
wi depend on the point v:

wi = 1
|pi − v|2α

(8.2)

The parameter α controls the decay-profile for the distance, and should be larger
than 1. For our examples, we experimentally chose it to yield satisfying results, and
a typical value was 1.5.

This leads to a different transformation lv(x) for each single point v. Restricting
the allowed transformations to similarity transformations, Schaefer et al. find the
following optimal mapping functions for the single points v:

lv(x) = (x − p∗)
1
µs

∑
i

wi

(
p̂i

−p̂i
⊥

) (
q̂i

T − q̂i
⊥T

)
+ q∗ (8.3)

Here, p∗ and q∗ denote the weighted centroids:

p∗ =
∑

i wipi∑
i wi

(8.4)

q∗ =
∑

i wiqi∑
i wi

(8.5)

Furthermore, p̂i = pi − p∗, q̂i = qi − q∗, µs = ∑
i wip̂ip̂i

T , and ⊥ is an operator
which maps a vector (x, y) to (−y, x).

We apply these mapping functions for single points individually to the points in
our geographical datasets. As Schaefer et al. point out, the mappings still suffer
from overlap. A simple example clarifying the resulting overall mapping functions
by applying them to a regular grid can be seen in Figure 8.1(a). In Figure 8.1(b), the
overlapping parts of the resulting 2D mapping function are clearly visible. Thus,
we combined the above mapping method with the overlap control described by
Tiddeman et al. [76] to achieve overlap-free mapping functions.

8.2.2 Overlap Control
Tiddeman et al. describe a general method to avoid overlap problems. One key
observation of the method is, that for any given mapping function, another mapping
function can be derived by scaling the mapping, i.e. interpolating it with the identical
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transformation. Such a scaling operation with a scaling factor s yields, for our case,
the following mapping function:

ls(v, s) = (1 − s)v + slv(v) (8.6)

The other key observation of the method is, that overlap occurs at any point
in a given mapping function if the determinant of its Jacobian changes signs. It
is therefore necessary to restrict this determinant J to be at least positive. Since
values of J close to 0 mean, that the mapping at that point compresses the warped
information very strongly, Tiddeman et al. restrict J further by requiring it to be
larger than a minimal value Jmin.

J can be calculated using estimates of the partial derivatives by mapping two
points close to a point v as follows:

(
∂f

∂x
,

∂g

∂x

)
≈ lv(v) − lv(v + (δ, 0))

δ
(8.7)

(
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δ
(8.8)
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(8.9)

Here, δ is some small value. For several scaling factors s, with 0 < s < 1,
it is guaranteed that the resulting mapping function is free of overlap. To find an
optimal scaling factor, it is necessary to solve the quadratic equation

J =
((

s
∂f

∂x
+ 1

) (
s

∂g

∂y

)
+ 1

)
− s2 ∂f

∂y

∂g

∂x
= Jmin (8.10)

for the Jacobian determinant to be Jmin. Solving a quadratic equation yields
between two and zero roots. Since the Jacobian determinant is always equal to 1 at
s = 0 and only gets smaller than the minimal value Jmin at the roots of the equation,
the mapping is locally free of overlap or strong compression for all scaling factors
larger than 0, but smaller or equal to the smallest root in the interval between 0
and 1. To ensure quick convergence, the method uses this root as scaling factor.
Since the control points should not overshoot their destination, 1 is used if there is
no such root.

It would be necessary to solve the equation for all points in the mapping function
in order to find an overall optimal scaling factor. Since this is not possible, the
equation is usually solved at discrete positions on a regular grid. We solve it for
every single point we map individually. Then, the overall best scaling factor is the
minimum of all the locally optimal factors.

Scaling the whole mapping with the derived scaling factor yields a new mapping,
which does not fulfill the constraints of the warp, but already brings the control
points some portion of the way closer to their destinations, as can be seen in Fig-
ure 8.1(c). Iteration of the process and concatenation of the partial mappings brings
the control points arbitrarily close to their destinations. A drawback of this method
is, that the convergence is not guaranteed for all cases. Also, choosing Jmin too
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small leads to unnecessarily strong compression, while choosing it too big prevents
quick convergence. A typical value we used was 0.5. We found that with this value
the overlap control worked very well for several different examples, which converged
within 5-15 iterations. The result of the iterative process for our simple example
can be seen in Figure 8.1(d).

(a) (b) (c) (d)

Figure 8.1: Undistorted grid (a) with fixed control points at the corners and one
control point moving the middle of the grid p to a position outside of the grid q.
The MLS method results in overlap in the 2D mapping function (b). Scaling the
mapping yields a mapping function (c) which moves the control point closer to its
destination position. Iterating this process and concatenating the partial mappings
results in a mapping function (d) fulfilling the constraints without overlap. Note
how the angles at the corner are still right angles after the mapping.

8.3 Interactive Method
We augment schematic maps of transportation systems by superimposing them on
street-level maps that are fitted using image warping techniques. Schematic trans-
portation maps usually contain little or no detail describing the environment of
stations or their embedding in the surrounding area. The annotation of a distorted
city map alleviates this deficiency and improves further the usability of schematic
transportation maps by merging two different navigational spaces. We obtain an
easily readable transportation network map on which we can show all the typical
city map features such as rivers, streets, and parks without compromising on the
schematization. Furthermore, we present two interaction techniques: we couple
zooming with warping and control over the level of detail in what we call Warping
Zoom, and adapt a fisheye technique for the exploration of geographical details in
the schematic context.

When people use a city’s public transportation system, they are faced with a
seemingly simple task: They start at one point somewhere in the city, want to get
to a nearby station, look for the best connection to another station close to where
they want to go, and finally want to reach that destination itself. Usually people
use two maps to accomplish that task: On the one hand, an ordinary street-level
city map, and on the other, a schematic map of the system of public transportation
in the area.

The reason for that is, that both of these representations of our world have their
advantages and disadvantages: The ordinary map is very well suited for gaining
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detailed information down to every single street, but for several reasons struggles
to give a fast overview over the network of public transportation, even if that net-
work is included in the map. A schematic map, on the other hand, is optimized
for the readability of information concerning the connections and structure of the
transportation network. However, it seldom shows the different stations in their
surroundings and fails to deliver the needed contextual information for the task
mentioned above.

In this section, we describe a method to produce a compound map containing
both, network and detailed street information, by warping the street map informa-
tion to fit a schematized map of a public transportation network. For that warp, we
use the earlier introduced mapping from the field of image distortion, which is espe-
cially well suited for geographical information. We also introduce a Warping Zoom
and an adaption of fisheye views which yield in dynamic interactive maps applicable
for both, street-level navigation as well as navigation in the public transportation
system.

8.3.1 Merging of two data spaces
In our method we use the positions of the stations in both of these maps to merge
them in one compound depiction by warping the street-level map to fit the schematic
map. Towards this end, we use the corresponding pairs of positions as control points
in a warping technique from the field of image warping. The positions in the detailed
map serve as starting positions, and the positions in the schematic map as end
positions for this warp. This yields a mapping function which, when applied to the
geographically correct map, shifts the stations to their positions in the metro map,
and distributes all the other features of the real world smoothly between them. We
then use this warped map to augment the schematic metro map, in order to support
navigation and orientation in the parts of the real world between the metro stations.

8.3.2 Prototype Implementation
As proof of concept, we implemented a prototypical system that generates combined
schematic and geographic maps.

Schematic maps are the eminent representations of public transportation services
and therefore available for most larger cities.

For the geographic information, we use U.S. Census TIGER map data [78],
which contain vector data of detailed street information and landmarks such as
water surfaces, parks, airports and public institutions. An advantage of these vector
data is the possibility to provide good quality of rendered maps over a wide range
of resolutions. They also allow to transform the topography independent from, e.g.,
textual and symbolic labels to ensure readability. Moreover, these particular data
are in the public domain and sufficiently detailed to demonstrate the potential of our
approach for actual city plans. We manually annotated the data with the geographic
positions of metro stations, compiling this information from other publicly available
sources like GoogleMaps [23]. Figure 8.2 shows a geographic map of the Washington
Metropolitan Area annotated with the geographically correct positions of the metro
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stations, the corresponding schematic metro map, and the metro map annotated
with the warped geographic map.

Figure 8.2: Geographic map of the Washington Metropolitan Area with positions of
metro network stations superimposed (left). A metro map layout of the same area
optimized for readability (middle). In our compound map (right), the metro map is
annotated with the warped geographic map.

To warp the geographic map, long lines in the original data are first sampled
sufficiently fine to avoid artifacts when rendering them, and the polygons between
them. This is necessary because, although the mapping functions described earlier
are smooth, straight lines are mapped to curves. Note that mapping only the start
and end of a line, and connecting these in the warped image again by a straight
line, does not yield the desired result of smoothly deformed curves in general. After
subdivision, we evaluate the mapping function for every point of the geographic
vector data as described in Section 8.2. We neither use a grid with fixed cell size nor
rasterize our data beforehand, like it is usually done in the process of applying image
warping functions. The calculation of the mappings itself is time-intensive; our
examples took around 1 hour to process on an ordinary desktop computer. However,
the mapping has to be calculated and saved only once for every set of control points.
To preserve quality, we render the distorted street-level data consisting of lines and
polygons after the warp using OpenGL [68] and GLUT, reaching interactive frame
rates. In the end, the metro stations, which were manually drawn into the street-
level map, have the same positions as the stations in the schematic metro map. We
thus obtain a compound map showing topological and topographic information –
the schematic metro map annotated with the distorted geographic map.

A particularly nice feature of our warping approach is that it allows to inter-
polate the mapping between exact geography and schematization. Placing stations
in a convex combination of their geographic positions and their positions in the
schematized map yields a compromise between geography and schematization. This
compromise can be extended to the entire compound map by linearly interpolating
between the geographic map and its distortion based on the schematic map. We
will sketch an important application of this feature in the next section.

8.3.3 Examples and Use Cases
The main purpose of our work is to ease the transition between schematic maps,
which are useful for navigating in a transportation system, and geographic maps,
which are better suited for autonomous navigation and locating sites.
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We can envision three different use cases for our method: Firstly, on large, static
depictions, like wall maps at metro stations, it would be possible to show more detail
where it is needed compared with an ordinary map.

Secondly, with limited space, a static overview over the compound map yields
annotation of the schematic map with a focus on large streets and landmarks, but
can still aid rough orientation in the city. These two cases already make it obvious
that level of detail needs to be addressed.

The most interesting use case is the interactive application of our method for
small displays, like PDAs. Here, our method can really demonstrate the advantages
of linking the two navigational spaces, as we will describe in Section 8.3.5.

As mentioned earlier, we require as input a street-level map of an arbitrary city
annotated with the stations of its transportation system and a schematic transporta-
tion map of the respective city. We applied our method to maps of the Washington
and the Boston area. We chose these two cities because they contain typical features
like airports, lakes, rivers, coastlines, islands, harbors, parks as well as a fairly com-
plex transportation system with nontrivial graph structure. Exemplarily we present
geographic and compound maps of the transportation systems of the cities in Fig-
ure 8.3. In the Boston case, the center of the area is greatly magnified compared to
the surrounding area, similar to a fisheye lens. This effect is even more clearly visible
in the compound map of the Washington map. The mapping functions manage to
keep the areas close to the stations relatively undistorted, while areas between the
stations are more strongly stretched.

8.3.4 Level of Detail

Addressing level of detail turned out to be an important issue for our technique.
Since showing all the small details on a limited space can lead to indistinguishable
visual clutter, it was necessary to consider the local magnification and compression
for the depiction of the different features of the geographic map. During the iterative
mapping, we calculated for each point an estimation of the partial derivatives at that
point for overlap control. We can use these estimations for level-of-detail control as
well, since the determinant of the Jacobian yields the local area magnification, and
its condition number is proportional to the local compression.

We found it helpful to modify the thickness of linear features like streets di-
rectly proportional to the local magnification, and indirectly proportional to the
compression. This way, the density of features is evenly distributed over the whole
depiction.

8.3.5 Interactive Warping Zoom

For the task of street-level navigation, the typically small map size of schematic
metro maps is inapplicable. In order to read the navigational information of the
street level, the annotated metro map needs to be enlarged to the size of a regular
street-level map or the compound map needs to be enhanced by an interactive
zooming technique.
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(a) (b)

(c) (d)

Figure 8.3: Geographic maps of Washington (top left) and Boston (bottom left).
On the right, the maps are fitted to the respective schematic metro maps. Note that
it is now possible to discern details in the cities’ centers, which are not visible on
the left, due to the fisheye-like character of the implied mapping functions.
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Figure 8.4: The Warping Zoom (here shown on the diagonal in red) is a combina-
tion of zooming and at the same time warping between the schematized and the
geographically correct map: This makes it possible to employ the schematized lay-
out for an overview, and to employ a detailed geographical layout for localization
and street-level navigation. Note that it is not possible to discern the connections
in the center of Washington in the geographic overview (top left) in this resolution.
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The enlargement of the compound map contradicts the main advantage of schematic
maps, which is to give a quick overview over the transportation system on a prefer-
ably small map. So we chose to implement a zooming technique, which couples
scaling of the viewport with a transition between our schematic compound map and
the geographically correct compound map, which equals the undistorted street-level
map annotated with a geographical transportation map. To achieve the transition
between the two maps we take advantage of the gradual distortion technique in-
troduced in Section 8.3.2. While zooming, we interpolate between the distorted
and the undistorted map and simultaneously translate the map in a way that keeps
the center of the map at a constant position on the screen. This technique we call
Warping Zoom.

The effect of our Warping Zoom technique is shown in Figure 8.4. The resulting
dynamic compound map is especially well applicable on mobile devices: because
their display size is usually very small, dynamic maps with zooming functionalities
are generally favored. While zoomed out of an interactive general city map, the
user wants to get a quick overview of the city. When zooming in, the user wants
to get detailed information about a specific region or point or even wants to read
navigational information of the street level.

Contrarily, in case of navigation within the city with use of public transportation,
the destination is reached approximately by public transportation. This navigation
step is aided adequately by a schematic transportation map. So, when zooming
out, the user gets a quick overview of the transportation system – which is natu-
rally a schematic layout of the transportation system. In our implementation this
schematic transportation map is annotated by warped street-level information in an
adequate level of detail. The stations of the transportation system are the interfaces
between two navigational spaces – the transportation system and the street-level
space. Leaving the transportation system at a specific station, the user has to
navigate on the street level to reach the destination exactly. Therefore, the user
requires geographical accurate information about the surroundings rather than a
quick overview of the transportation system he just left. Additionally, since just a
few stations are displayed on the zoomed section, the advantages of schematization
are invalidated. Thus, when zoomed in, the compound map has to be displayed in
an undistorted/unschematized layout.

We found that, in order to make the interpolation between the distorted and the
undistorted map feel intuitive, we had to define start and end scaling factors for the
transition considering the configuration of the different maps and display sizes. We
display the undistorted compound map when only a few stations are visible. The
other extreme is defined once the whole schematized metro map just fits into the
viewport.

The level-of-detail-control makes all steps of the transition readable: On the
coarsest level, the schematic map is mainly annotated with the most prominent
features of the city, like parks, rivers and large roads. The smaller streets appear
more clearly when the user zooms in and wants to navigate in the street network.
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Figure 8.5: Geographically correct shape of an airport in Washington (left). Or-
dinary fisheye view applied to the schematic map (middle). Adapted fisheye view
(right).

8.3.6 Adapted Fisheye Views

Although the Warping Zoom technique makes the examination of small geographic
details possible, it is also desirable to show magnified geographic detail and schema-
tized network information in one seamless view, like in the spider-maps referenced
earlier. However, mixing the two spaces by simple spatial interpolation potentially
leads to overlapping problems, since the absence of overlap is guaranteed only for
concatenation of overlap-free mappings. Therefore, to guarantee a seamless transi-
tion between detail and context, we chose a different approach: We apply fisheye
mappings to the schematic space.

Using ordinary fisheyes would only make the local compression inherent in the
warped information more visible. To counter this compression, we calculate the
compression factor using the estimations of the partial derivatives at a center of
interest. These define a locally linear transformation, and using a singular value
decomposition, it is possible to estimate the magnification factors in the different
directions. If these are not equal, the information at that point is compressed. To
counter that compression, before applying an ordinary fisheye mapping like Keahey
and Robertson [34], we apply a mapping which stretches the area around the center
of interest. We then let the stretching decay depending from the distance of that
center. At a certain radius from the center, the schematically distorted information
is left unchanged by our mappings.

The resulting mappings are free of overlap, and stretch the warped information
just enough to locally guarantee angular faithfulness. We illustrate our method by
an example in Figure 8.5. On the left, the geographically correct shape of an airport
in Washington can be seen. Magnifying the respective detail in the schematized view
using an ordinary fisheye view (middle) exhibits a compressed shape with changed
aspect ratio. The right cut-out shows the result of our technique: The shape of
the airport is enlarged, and it is close to its original shape. In order to fit the
geographical detail into the schematic map, it is rotated. The difference between
the ordinary fisheye and our method is illustrated by the red circle in the middle
cut-out, which corresponds to the ellipse on the right.
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Figure 8.6: Compound map of Washington D.C. in a schematic layout with an area
around a point of interest, magnified and stretched by our fisheye technique.

Figure 8.6 shows the whole compound map of Washington D.C. in a schematic
layout. The area around a point of interest is magnified with our fisheye technique.
Such an interactive map can be used for combined navigational tasks, similar to the
Spider Maps mentioned earlier.

8.3.7 Distance Information

To aid in the understanding of the geographical distance relations in the schematic
view, we found it helpful to annotate the metro map with isolines at certain distances
from the closest stations. During the iterative mapping, we distort the points of a
regular grid in addition to the street-level data. To this end, we apply the mapping
function to the single grid points, which results in a distorted grid as can be seen in
Figure 8.7.
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Figure 8.7: A regular grid distorted with the same mapping as the one used for
warping the Washington data in Figure 8.3. The grid is used to render isolines
around the stations in order to aid in the understanding of the geographical distance
relations.

We can then visualize the real world distances from points in the map to the
next station by first calculating the distance of every regular grid point to the closest
station. Then, applying a marching squares algorithm to the distorted grid yields
isolines denoting equal distances to the closest station in the real world.

While for the undistorted grid, these isolines consist of circular shapes centered
around each station, the shapes are more complex after the distortion, as can be
seen in Figure 8.8. For example, two stations, which are close to each other, are
connected by an hourglass-like structure. Moreover, a gap between these structures
indicates large distances between the corresponding stations.

This way, for example, the appropriate selection of the nearest station to a
specific destination can be supported.

8.4 Conclusion
We presented a method to annotate schematic transportation maps with street-level
information of the respective city. With the introduced Warping Zoom we attain a
dynamic map that is as applicable for street-level navigation as for navigation in a
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Figure 8.8: Isolines around stations. The lines are at constant geographic distance
to the closest station, so that nearby stations are connected by blob-like shapes,
while gaps between these shapes indicate large distances.

public transportation system. When the user switches navigational spaces by leaving
the station of a public transportation system, switching map layouts is advisable as
well. The reason is, that the user needs to read out disparate relations by switching
navigational spaces: connected stations versus geographical relations of streets and
city details. Our zooming technique implements this switching of layouts by contin-
uous warping between the distorted schematic compound map and the geographical
compound map. Only applying an ad-hoc map switch apart from zooming would
require the user to find the old position on the new map. In addition the user might
lose orientation. The in-between layouts, which are partially distorted/schematized,
can support more complex navigation scenarios, for example, in a situation where
a trade-off between the readability of walking distances and connectivity between
metro stations has to be made. We also presented an adaption of fisheye views to
achieve a detail-in-context visualization for combined navigational tasks.





Chapter 9

Conclusion and Outlook
This work describes new methods to map two-dimensional euclidean information
to interactive displays in order to help to ameliorate the detail-in-context problem.
The major influences for this undertaking, which are described in Chapter 2, are
the growing body of very detailed information, artists’ and scientists’ concern with
and methods for the illustration of such very complex data, and also brain science,
which tells us how our own visual system deals with detail and context. Chapter 3
summarized a manifold of interactive methods developed to interact with detailed
data, especially the distortion-oriented detail-in-context approaches.

After a careful mathematical analysis in Chapter 4, it was shown that a funda-
mental problem inherent in the strong magnification of details in their context is the
introduction of anisotropic compression, which can render local shapes unrecogniz-
able. One of the techniques to solve this problem is the application of the complex
logarithm as a mapping, a function which is analytic and therefore introduces no
anisotropic compression.

The challenges in this mapping are the questions of how to make it intuitively
understandable for viewers, how to interact with the renditions, and how to speed up
the rendering process sufficiently for interactive display employing modern graphics
hardware. For the first application, vectorized geometric data, these questions are
answered in Chapter 5, amongst others with the presentation of a smooth transition
between complex logarithmic and euclidean layouts via complex root functions, di-
rect mouse interaction by dragging points, and the use of vertex shaders. For the
second application, pixelated aerial imagery of the whole earth, another intuitive
connection between complex logarithmic views and central perspective, improved
mouse interaction, and a sophisticated clipmapping-like rendering approach using
fragment shaders were used, as is detailed in Chapter 6.

The developed new perspective of our world was incorporated into an interac-
tive artistic and research installation in collaboration with the Center for Art and
Media in Karlsruhe and the Human-Computer Interaction Group in Konstanz. The
installation, which is described in Chapter 7 was successfully shown to the broad
public on several events, and was a great experience for the author of this thesis.

Another successful cooperation with the Algorithmics Group and the Center
for Junior Research Fellows at the University of Konstanz, which is described in
Chapter 8 lead to the development of warping techniques for the navigation of
complex public transportation networks. The connection lies in the properties of
the underlying data, and therefore similar challenges like for complex logarithmic
views.

The work described in this thesis was very rewarding, because it draws on a
broad spectrum of influences; not only on art and scientific visualization, but also
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on cartography, perception and computer graphics. The potential of the acquired
knowledge is by no means exhausted. Consequently, in the next and last section of
this thesis, open questions and directions for future development of the described
techniques are shown up.

9.1 Future Work
The developed method of map warping certainly magnifies several areas, but in the
process introduces anisotropic compression. Complex logarithmic views can magnify
only one center of interest without that flaw. It is an open question how to apply
similar conformal mappings for two or more focus points, or even along lines of
interest, such as for route descriptions. The potential of complex analysis in this
respect has only begun to be explored.

Another promising extension would be the inclusion of three-dimensional data
for the renditions. The use of geographic geometry data seems relatively straightfor-
ward, but the access to adequate data for the whole planet is still very restrictive due
to the huge cost associated with the acquisition of such data. Geographic data is also
more or less two-and-a-half dimensional, organized in a planar fashion with an ad-
ditional elevation. The use of very complex fully three-dimensional data would need
different mapping methods, but would open up very different application subjects,
for example from biology, electronics design, and the more abstract visualization
layouts in information visualization.

For the extension to the third dimension, it is interesting to note that modern
graphics hardware not only continuously gets faster and faster, but also offers new
capabilities with every next generation. The rather new geometry shaders, which
nowadays are common in consumer hardware, offer exciting potential for the accel-
eration of the necessary refinement and distortion operations for quick rendering.
They also would improve an implementation of the method in Chapter 5, enabling
the rendering of much more complex data.

The methods in this work also might profit from a careful evaluation. The
tasks for such an evaluation should be quick, successive navigation to different very
small details in a large context for the complex logarithmic views, and making
decisions about the fastest way to get from one point in a city to another using
public transportation for map warping.

Concerning the latter, it is not clear whether the used mapping functions are
optimally suited for our perception of geographical information. They stress the
importance of keeping angles locally intact, maybe at the expense of readability for
extreme distortions.

Although we think existing handmade metro map layouts are still clearly supe-
rior to automatically generated ones, merging our method with a method for the
automatic generation of metro map layouts seems promising. This way, it might
be possible to find an even better compromise between detail and schematization,
avoiding extreme distortions in the street-level map and hard to read configurations
in the superimposed schematic representation.

Last but not least, the application of labeling algorithms could make both ap-
proaches much more usable.
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