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Complex Logarithmic Views for Small Details in Large Contexts

Joachim Böttger, Michael Balzer, and Oliver Deussen

Abstract—Commonly known detail in context techniques for the two-dimensional Euclidean space enlarge details and shrink their
context using mapping functions that introduce geometrical compression. This makes it difficult or even impossible to recognize
shapes for large differences in magnification factors. In this paper we propose to use the complex logarithm and the complex root
functions to show very small details even in very large contexts. These mappings are conformal, which means they only locally rotate
and scale, thus keeping shapes intact and recognizable. They allow showing details that are orders of magnitude smaller than their
surroundings in combination with their context in one seamless visualization. We address the utilization of this universal technique for
the interaction with complex two-dimensional data considering the exploration of large graphs and other examples.

Index Terms—Detail in context, complex logarithm, conformal mappings, analytic functions, interaction.
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1 INTRODUCTION

Navigating through complex two-dimensional data is a demanding
task: We would like to view small details, but at the same time the
connections between these details and the general overview are impor-
tant to us. While traditional explorative paradigms, such as panning
and zooming, show these two aspects of information consecutively,
the detail in context techniques show both simultaneously in the same
image.

Geometric detail in context techniques map the information space
to the image space in a non-linear way. Established techniques [3, 4, 5,
6, 8, 9], however, use mappings that distort the pieces of information
in a way that makes it hard to recognize them: Parts of the resulting
image are scaled differently in different directions, which means that
geometrical compression is introduced. This problem worsens if the
differences between scales for the details and their context grow larger.
The complexity of the data that we deal with today is steadily growing,
which means that it often contains tiny details in very large contexts.
Quite frequently, the details are orders of magnitude smaller than the
whole information space they are contained in. If we still want to
visualize details and context in the same image, we have to enlarge
them strongly in comparison to their context.

Compression, the scaling of two-dimensional information with dif-
ferent scales depending on the direction, is an obstacle for this attempt
because it distorts what we see as the shape of the pieces of informa-
tion. Accordingly, we need to use mapping functions that can scale
parts of the information very differently, but at the same time scale
them equally in all directions and keep angles locally constant. The
complex logarithm, which is a conformal mapping [7], holds all three
properties. In this paper, we propose to use it for the interactive explo-
ration of complex two-dimensional data.

We further propose an interactive technique for showing the tran-
sition between complex logarithmic views and the identical mapping
utilizing the complex root functions, which are another class of con-
formal mappings.

The paper is organized as follows: In Section 2 we clarify our un-
derstanding of distortion for the following discussion of common de-
tail in context approaches and discuss the properties of widely used
mapping functions. We then describe the properties of the analytic
mappings that we use in Section 3. Section 4 addresses their use for
the interaction with complex data, and Section 5 deals with issues con-
cerning the implementation of such mappings for given triangulated
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geometry on modern graphics hardware. The paper concludes with
the presentation of different example applications and a discussion of
the method and future work.

2 BACKGROUND

The need for detail in context techniques follows from the fact that
details have to be shown in a certain size in order to be visually recog-
nizable. The whole information space in the same scale does usually
not fit in the available space of the screen, thus it is necessary to use a
smaller scale to show the whole context.

Zooming and panning leaves shapes intact, but the context is lost
when details are enlarged, and the details are too small to be recog-
nized when the entire context is displayed. One widely used approach
to show both, detail and context, simultaneously is to use separate win-
dows for the detailed view as well as for the overview, thus breaking
the connections between a detail and its context. However, the need
to switch back and forth between these different views puts a mental
strain on the user.

The distortion oriented detail in context techniques are used in an
effort to show both, detail and context, in one seamless visualization,
by mapping them non-linearly from an original space to a display
space. This kind of distortion changes several properties of the de-
picted information. Thus, before we discuss commonly used mapping
functions and our approach using conformal mappings, we will clarify
what properties such mapping functions can have.

2.1 Distortions

All the mapping functions we are concerned with, map points in a
plane to other points in a plane. The depicted shapes have several
properties that can be distorted by a mapping: If we look at the in-
finitesimal small elements from which that information is pieced to-
gether, the properties that are of interest to us are size, orientation and
the connections to their neighbors preceding the mappings.

We follow [7], which describes mappings as locally linear, mean-
ing that small circles are mapped to small ellipses. The transformation
then can be locally described as a concatenation of a stretch in an ar-
bitrary direction d1, another stretch in the direction d2 perpendicular
to d1, and a translation and rotation (Figure 1).

The resizing of the different parts of the information is the most crit-
ical property for their recognizability: If the two stretching operations
are not equally strong, then a so-called compression is introduced in
a mapping. This compression leads to shapes being crushed, which,
for large differences in scaling factors, leads to them being mapped to
almost linear structures that are not recognizable anymore.

Conformal mappings, on the other hand, are those mappings that
stretch the pieces of information equally in all directions. This means
that small circles are mapped to other small circles without causing
distortions to local angles or introducing compression.
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Fig. 1. A locally linear mapping can be described as concatenation
of a stretch in an arbitrary direction d1, a stretch in the direction d2
perpendicular to d1, and a translation and rotation.

The rotation in the aforementioned transformation changes the ori-
entation of the pieces of information. Although this makes it more
difficult for a user to recognize shapes, a rotation itself leaves intact
what we perceive as the shape of objects.

Another property of mapping functions is how they deal with the
connections between different parts of the mapped space: If a map-
ping maps two infinitesimally close points to different positions, a cut
between these points is introduced. If this cut separates the details
from their context, a user has to mentally reconnect them, which in-
creases the mental strain. This work shows that cuts that still leave
a connection between the currently interesting detail and its context
are tolerable. Given the case that strong magnifications are required,
they are preferable to common approaches, in which parts of the in-
formation are compressed to such an extent that they are no longer
recognizable.

2.2 Common Mapping Functions

All the common distortion oriented detail in context techniques for
Euclidean spaces use mapping functions introducing compression:

Spence [9] was the first to show details and context on a computer in
one seamless visualization. In his bifocal views he divided the display
in three different areas, one uncompressed for the detail view, and two
areas on the left and on the right side that seamlessly connected with
the detail view. For the areas on the side of the display, he used the
purest form of compression allowing the context to fit on the screen by
shrinking the underlying information in the horizontal, but using the
original scale in the vertical direction.

The Perspective Wall [6] uses a similar approach that alleviates the
problem with compression. It uses a perspective mapping, thus show-
ing information placed at a distance to be smaller, in the same way
as is well known from nature and is intuitively graspable for humans.
Nevertheless, perspective mapping still introduces compression with
growing distances: Information that is very far away is mapped to a
line, the horizon,as can be seen in Figure 2(b).

The Table Lens [8] is another approach that uses perspective map-
ping functions: It uses four areas connected around an undistorted de-
tail view showing the context. In this way, it uses the display space
more efficiently than the perspective wall, and allows for showing the
context above and below the detail area. However, the problems with
the introduction of compression in the process remain.

A different class of mapping functions are the so-called fisheye
lenses. Keahey [3] used Fisheye mappings, thus keeping all the
connections around a detail intact. These mappings derive from a dis-
tance function that maps every point around a detail to a new point
in the same relative direction. This leads to symmetrical distortions
around the detail. However, the context has to stretch all the way
around the detail after the mapping. Consequently, parts of the in-
formation cannot be scaled with the same factor in all directions, and
will be compressed (Figure 2(c)).

Keahey [4] also developed a technique to find a mapping function
for arbitrary magnification fields by non-linear optimization. If a mag-
nification factor for every point in a plane is given, the algorithm com-
putes the fitting mapping by minimizing deviations from this magni-
fication. The used measure for magnification, however, measures the

area magnification of the mapping, and thus does not prevent compres-
sion of parts of the underlying data.

The Hyperbolic Tree View [5] is a conformal mapping used for the
detail in context problem that does not introduce compression. How-
ever, it maps the hyperbolic plane to a disk. It is not directly applicable
for Euclidean layouts of information.

In a nutshell, all the aforementioned detail in context techniques
for the Euclidean plane compress parts of the information we want to
show. Strong compression leads to shapes being unrecognizable af-
ter the transformation, and is inevitable with the described techniques
if there are large differences in magnification factors between details
and their context. The goal of this work is to map two-dimensional
Euclidean data in a way that avoids compression while enlarging parts
of the information in relation to other parts.

The perfect mapping that keeps all other properties intact while
scaling parts of a plane differently cannot exist. Thus, choosing a
mapping function for a certain problem always has to be a tradeoff
between the different kinds of distortion it introduces. The point made
in this paper is, that for the exploration of complex data over several
orders of magnitude, keeping shapes uncompressed is more important
than keeping rotations constant and even justifies giving up some of
the connections between points in the plane in the process. Accord-
ingly, we propose to cut the plane open along a line from the center of
interest outward, which allows enlarging the center by extreme factors
without introducing local compression in the mapping.

3 COMPLEX LOGARITHMIC VIEWS

The logarithm is a function well known for application to a single axis
for plots that contain numbers with different orders of magnitude. We
propose to use the complex logarithm as a two-dimensional mapping
function for the purpose of showing details that are orders of magni-
tude smaller than their surroundings in their context. The mapping
behaves very similar to a stretched version of a panoramic perspective
mapping, and thus allows showing all the information around a center
of interest simultaneously. If we would wrap the resulting images on
a cylinder, the halves of the objects intersected by the cut would be
seamlessly connected again. We further propose to use the complex
root functions for an intuitive transition from the identical mapping to
the complex logarithmic view. It magnifies information in a similar
way to a fisheye that is cut open and relaxed. In this section, our goal
is to encourage an intuitive understanding for these mappings using
the aforementioned connections to the well known mapping functions.
We also formally introduce the two mapping functions taken from the
field of complex analysis.

3.1 Fisheye Views
Common fisheye techniques map points in the plane to other points
using the following mapping:

Pt = F +
(P−F)
|P−F |

at(|P−F |) (1)

The distance function at changes the distance of P to the focus point
F , but the relative direction α is kept the same, as can be seen in Figure
3(a). The class of root functions is widely used as distance functions.

Such fisheye mappings have to introduce compression, due to being
constrained since the context around the enlarged detail has to remain
closed. The magnification factors along these circles are fixed because
the circumference of the circles around the center is fixed by their
radius. Figuratively speaking, the information lying on these circles
has to stretch in order to fill the whole circle.

3.2 Cutting a fisheye open
If we give up the constraint to keep everything connected in only one
point on every circle, we can move everything along these circles, until
the magnification factors in both directions are equal. Then the result-
ing mapping is conformal, and does not compress the information or
distort angles locally.

For a given fisheye with the n-th root function as distance mapping,
as shown in Figure 3(a), we can see how a regular grid of squares is
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(a) (b) (c) (d)

Fig. 2. Identical mapping (a) of a grid of small squares. Perspective (b) and fisheye (c) mapping both enlarge parts of the grid, but introduce
compression, visible because circles are mapped to ellipses. The complex logarithmic mapping (d) enlarges parts of the grid without introducing
compression.

(a) (b) (c) (d)

Fig. 3. Cutting a fisheye with the 5-th root function as distance function open by gradually dividing the angle by larger numbers. Once the angles
are divided by 5, the resulting mapping is conformal, small circles are mapped to circles. The resulting mapping is a complex root function.

almost distorted to circles. If we move every point Pt along a circle
by leaving it at the same distance from the center F , but dividing the
angle α by a constant, we can observe how the stretched squares start
looking like regular squares again. Once we have moved every point
to another point on the same circle, but with a n-th of the angle α , we
have reached conformality, and right angles remain the same after the
mapping. The resulting mapping is the n-th complex root function, a
function treated in the field of complex analysis.

3.3 Complex root functions
The subject matter of complex analysis are complex-valued functions:
These can be interpreted as two-dimensional mappings, since complex
numbers are mapped to other complex numbers. An advantageous
property of the complex-valued functions we use is, that they are con-
formal, implying that angles are not distorted, and no compression is
introduced [7].

The complex root functions map a complex number z to another
complex number in the following way:

n
√

z = n
√
|z| · ei arg(z)

n with −π < arg(z) < π (2)

Like in the fisheye above, the n-th real root function is applied to the
magnitude of a two-dimensional position. In addition, the angle is
divided by the root factor n. The middle of the grid is enlarged stronger
with growing n. The division of the angle leads to a cut in the grid,
and to shapes that look like a slice of pie. The square root cuts the
angles in half, and thus the grid only occupies half of the space. The
4th root leads to the grid occupying a quarter of the space, and so on.
For larger n, the grid is mapped to a narrow wedge, and the central
square takes up most of the space because it is magnified that strongly.
However, the part of the mapping that shows its structure in Figure
3(d) looks very similar to the complex logarithm in Figure 2(d). In the
next part of the paper we will see that we can use shifted and scaled

root functions for a smooth transition between the identical and the
logarithmic mapping.

3.4 Transition
To yield the transition from the identical mapping to the complex log-
arithm using the root functions, we use the series expansion of the
exponential function:

ez =
+∞

∑
k=0

zk

k!
(3)

Transforming the base of the n-th root function

n
√

z = z
1
n = e

1
n log(z) (4)

and applying the series expansion in Equation 3, we can express the
root as

n
√

z = 1+
1
n

log(z)+
1
n2

(log(z))2

2!
+

1
n3

(log(z))3

3!
+ . . . (5)

If we subtract 1 from both sides, and multiply by n, this yields

n · ( n
√

z−1) = log(z)+
1
n

(log(z))2

2!
+

1
n2

(log(z))3

3!
+ . . . (6)

For n → ∞ everything except the first summand converges to 0, and
thus we yield this connection between the roots and the logarithm:

lim
n→∞

n · ( n
√

z−1) = log(z) (7)

This shows, that appropriately scaled and shifted root mappings con-
verge to the complex logarithmic mapping. The resulting transition is
depicted in Figure 4.
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Fig. 4. Transition from the identical mapping (left) to the logarithmic mapping (right) using scaled and shifted complex root functions.

3.5 Complex Logarithm
As stated above, we want to use the complex logarithm as a two-
dimensional mapping function. It maps a complex number to another
complex number in the following way:

logz = ln |z|+ iarg(z) with −π < arg(z) < π (8)

It maps the logarithm of the magnitude of a complex number to the
real value and the numbers angle to the imaginary value. Thus, points
on circles around the origin (with equal distance from the origin) of
the complex plane are mapped to parallel, vertical lines. Rays from
the origin on outwards (with equal angle) are mapped to parallel, hor-
izontal lines (see Figure 5). The origin itself is a singularity, mapped
infinitely far away in the negative real direction, and magnified in-
finitely.

Fig. 5. This complex logarithmic mapping maps rays from the center on
outward to vertical lines, and concentric circles to horizontal lines. Note
the extreme difference in distances between the horizontal lines on the
right and the evenly spaced circles on the left.

The magnification is indirectly proportional to the distance from the
origin before the mapping. This means that objects close to the center
of the plane are extremely enlarged. Like the one-dimensional loga-
rithm, the complex logarithm maps distances that differ by a certain
factor to equal distances: Thus, points that have distances from the
center with the same order of magnitude are mapped into equally wide
horizontal stripes. Consequently, enlarging the context by orders of
magnitude only means enlarging its image by constant stripes.

The large differences between magnification factors we can show in
a single image are apparent in Figure 6. While we need several ordi-
nary images to visualize details in a complex graph, the complex log-
arithmic view simultaneously shows objects with sizes ranging over
three orders of magnitude.

4 INTERACTION

Using the described techniques, it is possible to conformally map two-
dimensional information in a way that enlarges one point in it ex-
tremely strong, while shrinking the others in relation. The interaction
with such mappings has to answer two questions: Firstly, we show
how navigation works by changing the point in the center of the mag-
nification interactively. Secondly, we describe how we use the root

functions as a transition from the identical to the complex logarithmic
mapping, in order to make these mappings easier to understand and to
interact with.

For the navigation through the data we allow the user to drag a point
of the transformed plane with the mouse to an arbitrary other point.
By inverting the actual transformation, we calculate where the starting
point and the end point of the dragging operation are located in the
original, untransformed space. The resulting points yield a translation
vector, which moves the point under the mouse pointer to the intended
new position when applied to the original data.

This mode of interaction is very intuitive, since it feels like grabbing
and moving objects on the display. Pulling them towards the origin of
the transformation enlarges them, and pulling them away from the ori-
gin makes them smaller. After getting used to this mode of interaction,
it is possible to bring very small details in focus with one dragging op-
eration of the mouse without releasing the mouse button (see Figure
8).

In order to aid the understanding of the complex logarithmic map-
ping, and enable changing between logarithmic and identical map-
pings fluently, we employ the root functions as a transition between
the two mappings: We let the user interactively manipulate a param-
eter 0 ≤ a ≤ 2π , which describes the opening angle of the wedge on
which the information is mapped. An angle of 2π means, that there is
no cut in the mapping, and we use the identical mapping. Between 0
and 2π , we use the complex root functions. The parameter n in Equa-
tion 2 is calculated with

n =
2π

a
(9)

to yield the desired opening angles. For small values of a, the wedge
would grow very narrow, and only use the upper part of the screen,
which, however, is against our intentions. Thus, we scale and shift the
wedge in the way described in Section 3.4. The result is the transition
shown in Figure 9. Once we are sufficiently close to a = 0, we switch
to the complex logarithmic view, which is shown in Figure 11.

5 IMPLEMENTATION

Our implementation of the described technique takes geometry con-
sisting of points, lines and triangles as input data. Arbitrary polygons
can be rendered by subdividing them into triangles.

We can simply re-map point primitives by calculating their new po-
sitions. There are, however, two reasons for dealing with lines and tri-
angles differently: Firstly, straight lines in the original data are mapped
to curves in the transformed space. This requires to subdivide lines and
triangles in order to avoid artifacts. The details, which we view very
closely, have to be divided into enough sub-primitives so that after the
transformation the discretization of the curves is not too distracting.
For our implementation, we subdivided the geometry empirically, un-
til the artifacts disappeared. This leads to the use of many unnecessary
primitives. However, it is possible to divide the primitives adaptively
by taking their magnification factors into account, and rendering more
triangles where the magnification factor is higher.

Secondly, the mappings we use introduce a cut in the mapped infor-
mation. It is thus necessary to separate the vertices of line segments
and subdivided triangle primitives for the rendering if they are inter-
sected by the cut: The vertices of such primitives are mapped to op-
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Fig. 6. On the left side: Four views with different zoom levels centered around the same point in a two-dimensional layout of a graph. On the right
side: Detail and context of the same layout within one image, using a complex logarithmic view.

posite sides of the cut, and should no longer be connected in order to
prevent artifacts. For line segments, the subdivision is straightforward.
We calculate the intersection point with the cut, and replace the line
segment with two line segments on each side of the cut.

For triangles, there are two different cases in which triangles can be
intersected by the kind of cut resulting from the used mappings: In the
first case, the start of the cut is located inside the triangle, making it
necessary to cut open one of the sides of the triangle, and to replace
the triangle with five smaller triangles. In the second case, the cut
intersects two sides, which requires to disconnect the two halves of
the triangle and to replace one half with two smaller triangles. The
two different cases are shown in Figure 7.

Fig. 7. The two cases of intersection between a cut and a triangle.

The intersection tests can be performed very fast with hierarchical
boundings for the primitives, since the cut only intersects a few of
them at any given time. After the primitive division, we employ vertex
shaders to transform the geometry. We reach interactive frame rates on
common graphics hardware for data sets with hundreds of thousands
of primitives.

6 APPLICATIONS

The first application of our proposed method is the exploration of com-
plex graphs that visualize complex, hierarchically organized software
packages [1]. The circles in the visualization depict the single software
classes. They are surrounded by colored areas of recognizable shapes

that visualize the containment within individual software packages.
Edges between the circles represent inheritance relations between the
corresponding classes. The visualization contains many details that
are over a thousand times smaller than the entire context.

The original intention behind our method is to be able to explore
single nodes closely, while still keeping the whole context in sight and
reachable at all times. Enlarging the single nodes to a considerable
size of the screen allows showing additional details for these nodes,
such as source code or information about variables.

The application evidences the advantages of our approach over ex-
isting methods: The characteristic shapes that show the clustering
in our graphs are well recognizable, even if they are far away from
the current center of interest, because they are not compressed. This
makes it possible to find known places again very quickly, even though
they might be very small on the screen. Pulling these places into focus
is possible with one simple drag of the mouse.

In addition, the complex logarithmic mapping yields a very intuitive
display for connections from a node focused in the center of the map-
ping to other nodes: All rays emanating from this node are mapped
to vertical parallels, and thus separated from each other. This reduces
the clutter between the edges starting at a focused node that is eminent
in an identical mapping of the whole information space or a common
fisheye (see Figure 11).

To show that our approach is versatilely usable, we present our sec-
ond application. Enlarging Voronoi Treemaps [2] shows several prop-
erties of the complex logarithmic views. Since the shapes of the single
cells and the borders of the hierarchies in a Voronoi Treemap are close
to circles, they are mapped to horizontal curves by the complex loga-
rithmic view. This yields the layered structures shown in Figure 10.

A third domain for our method is geographical information. Figure
12 shows a complex logarithmic view of map data of North America
centered at the Capitol in Washington. Well known features of very
different sizes like the national mall, the Potomac, Florida, and the
Great Lakes are easily recognizable, since they keep their shape after
the mapping. In addition, the mapping does not change angles at street
intersections, and thus makes it easy to follow known roads. It is also
very easy to answer which places in the view are closer to the center
of interest or farther away.

Our fourth example application is geographical statistical informa-
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Fig. 8. Traveling from point A to another point B: The user drags B downwards into the center of interest. At first, node A is intersected by the cut
in the mapping, and divided in two parts. After the first three images, the center of the magnification has left the green area. Then, after moving
through the blue area between A and B, the center of the magnification enters the area around B in the image next to the last.

Fig. 9. Unfolding of a complex graph layout with edges. Note how the blue node in the middle is enlarged and cut open.

Fig. 10. Voronoi Treemap (left) and complex logarithmic view with one
cell in the Voronoi Treemap enlarged (right). The borders of the different
hierarchies are transformed to almost horizontal curves.

tion, like the U.S. census data. This data typically contains a lot of
information in populated centers, which leads to overplotting, if we
want to visualize it in the larger geographical context. Figure 13 shows
a complex logarithmic view centered at a point in the central park in
Manhattan. It demonstrates that it is possible to show single street
blocks in the context of the whole state of New York, while not chang-
ing the shape of, for example, single counties in the countryside or
long island.

7 CONCLUSION AND FUTURE WORK

We presented a new method for the detail in context problem using
the complex logarithm as a mapping function. It allows to show tiny
details in very large contexts in one seamless visualization.

For an informal evaluation, we required several persons to use our
interface and browse through the visualizations. Beforehand, we ex-
plained our goals, showed the visualization in the undistorted view,
and explained the controls for the common zooming and panning, and
the transition to the logarithmic view. After a few minutes, most users
were able to move through the logarithmic views and quickly find
small details they had previously seen. The strength of our method
seems to lie in this task: A change from one place to another typically
takes only one mouse dragging operation and is accomplished in about
one second, while the same movement from one detail to another with
two zooming operations, first outwards, then inwards again, takes con-
siderably longer, since it is necessary to re-center the view between the
magnification operations. The difference in speed becomes more sig-
nificant with more complex data. Some users reported that it helped to
imagine themselves to be at the center of the visualization, looking in
all directions simultaneously, just like in a panoramic image. Then, the
fact that objects become larger once you pull them towards you was
reported as intuitively understandable, as well as the fact that things
disappearing from the view on one side reappear on the other.

The cut in the mapping and the fact that the orientation of the
mapped information is changed drastically, poses the most important
obstacle for the interaction with complex logarithmic views. However,
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Fig. 11. The origin of the complex logarithmic mapping is inside the node. It is cut open and mapped to the bottom of the image. Edges emanating
from the node to other nodes are mapped to parallel lines.

the degrees of freedom for the cut properties are currently not fully ex-
plored. The placement of the cut is variable, if we not only translate,
but also rotate the information.

The method is suited for arbitrary two-dimensional information. It
is our experience, that its advantages are especially evident if the infor-
mation is containing recognizable, interconnected features throughout
all the different orders of magnitude. The user has to be familiar with
the shapes in the visualization, since the changes in scale and orien-
tation make it difficult to recognize features that look similar solely
by their relative positions. It is thus important to use the method with
layouts that produce structures that are typical for the represented data
items.

Questions of how labels and other cues might help the exploration,
as well as the issue of how to incorporate knowledge of the hierar-
chical structure of the underlying data for performance and semantic
zooming, will be addressed in future work.
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Fig. 12. Complex Logarithmic view (bottom) of map data (top). The
view is centered at the Capitol in Washington. Points north-west of the
capitol are mapped to a vertical line in the middle of the image. Points
south-east are mapped to the very left and the very right.

Fig. 13. Logarithmic mapping (bottom) of census data of the state of
New York (top). The view is centered at the Central Park in Manhattan.
The corners of the park are still right angles, since angles are locally
undistorted.


